
Performance Evaluation and Tuning of

Virtual Infrastructure Managers for

(Micro) Virtual Network Functions

Pier Luigi Ventre∗, Claudio Pisa†, Stefano Salsano∗†, Giuseppe Siracusano∗‡,

Florian Schmidt‡, Paolo Lungaroni§, Nicola Blefari-Melazzi∗†

∗University of Rome Tor Vergata, Italy, †CNIT, Italy, ‡NEC Laboratories Europe, Germany, §GARR, Italy

Abstract—Virtualized Network Functions (VNFs) are emerging
as the keystone of 5G network architectures: flexibility, agility,
fast instantiation times, consolidation, Commercial Off The
Shelf (COTS) hardware support and significant cost savings are
fundamental for meeting the requirements of the new generation
of mobile networks. In this paper we deal with the management of
the virtual computing resources for the execution of Micro VNFs.
This functionality is performed by the Virtual Infrastructure
Manager (VIM) in the NFV MANagement and Orchestration
(MANO) reference architecture. We discuss the VIM instantiation
process and propose a generic reference model, starting from the
analysis of two Open Source VIMs, namely OpenStack Nova and
Nomad. We implemented a tuned version of the VIMs with the
specific goal of reducing the duration of the instantiation process.
We realized a performance comparison of the two VIMs, both
considering the plain and the tuned versions. The tuned VIMs
and the performance evaluation tools that we have employed are
provided openly and can be downloaded from our repository.

Index Terms—Network Function Virtualization, Open Source,
Virtual Infrastructure Manager, Virtual Network Function, Per-
formance, Tuning, OpenStack, Nomad

I. INTRODUCTION

Network Function Virtualization (NFV) is a new para-

digm [1] able to drastically change the design of current

networks. NFV aims at introducing software components

in place of specialized network hardware. These software

modules, called Virtual Network Functions (VNFs), execute

the same functions of network appliances and run using

virtual computing resources which are deployed on commodity

hardware servers.

NFV can be used to support highly dynamic scenarios,

in which the VNFs are instantiated “on the fly” following

the service requests. This concept has been described as

Superfluid Clouds [2] and is a key concept of the Superfluidity

project [3]. In these scenarios, VNFs tend to become small and

highly specialized Micro-VNFs, i.e., elementary and reusable

network elements. Complex services can be build through the

“chaining” of these Micro-VNFs.

Different virtualization approaches can be used to support

VNFs: Virtual Machines (VMs), Tinified VMs, Unikernels

and Containers (see [4] for a description of these concepts

and an exhaustive comparison). In this work we focus on

Unikernels for their suitability to Micro-VNFs: i) they offer

very good performance in terms of low memory footprint

and instantiation time; ii) they have very good isolation and

security properties.

In particular, ClickOS [5] is a Xen-based Unikernel tailored

for NFV appliances and able to provide highly efficient raw

packet processing. It has a small footprint (around 5 MB when

running), can be instantiated within around 30 milliseconds,

processes up to 10Gb/s of traffic and does not need a disk to

work. In addition, it benefits from the isolation provided by

the Xen Hypervisor and the flexibility offered by the Click

modular router.

Existing research efforts ([2] and [5]) demonstrate that it

is possible to guarantee low latency instantiation times for

Micro-VNFs in a specialized hypervisor. However, the same

requirements have to be guaranteed by an NFV framework

taken as a whole. In this work, we focus on the instantiation

process of Micro-VNFs in an NFV framework. In particular,

borrowing the ETSI NFV terminology (see Figure 1) we focus

on the Virtual Infrastructure Manager (VIM), which controls

and manages the virtual resources in the Network Functions

Virtualization Infrastructure (NFVI). Existing Open Source

solutions, designed for less specialized Cloud infrastructures,

provide a solid base to build VIMs for NFVI. However, a

deeper analysis (see Section II and Section VI) reveals that

these do not support Unikernels and that there is room for

tailoring the instantiation process to the NFV scenario to

enhance its performance.

The main contributions of this paper are:

• the description of a general reference model of the

VNF instantiation process, based on the analysis of two

general-purpose VIMs: OpenStack Nova [6] and Nomad

[7] by HashiCorp;

• modifications to these VIMs to instantiate Micro-VNFs

based on ClickOS [5];

• realization of performance evaluation tools for the two

VIMs to measure VM instantiation times;

• evaluation of ClickOS VMs instantiation times in Open-

Stack Nova and in Nomad;

• tuning of the VIMs to improve instantiation times;

We believe that the proposed model for VNF instantiation

is applicable to other VIMs not considered here. Starting from

the implemented components, experimenters/developers can

build solutions for NFV frameworks and extend our tools to

experiment on other VIMs.



Fig. 1. NFV architecture

The rest of the paper is structured as follows: First, we

will give some background of NFVs and VIMs in Section II.

Section III describes the general model of the Micro-VNF

instantiation process, and, starting from this, the correspond-

ing models for the Nova and Nomad VIMs are derived. In

Section IV, the modifications needed to boot Micro VNFs

with Nova and Nomad are illustrated. Section V provides

a performance evaluation of the Micro VNF instantiation

process. Finally, Section VI reports on related work, while

in Section VII we draw some conclusions and highlight the

next steps.

II. BACKGROUND ON NFV AND VIMS

The main building blocks of the ETSI NFV [1] and NFV

MANO (MANagement and Orchestration) [8] architecture

are represented in Figure 1. The Virtual Network Functions

(VNFs) leverage on resources provided by the NFV Infras-

tructure (NFVI) for the execution of the network services.

The NFVI layer is composed by COTS (Commercial Off

The Shelf) hardware and by the Hypervisor software which

implements the Virtualization layer abstracting the underlying

hardware resources. The NFV MANO components represented

in the right part of Figure 1 are responsible for the manage-

ment of the physical infrastructure and the management and

orchestration of the VNFs.

In particular, the NFVO (NFV Orchestrator) has the overall

view of the services and the resources, it interacts with the

VNF Managers (VNFMs) that manage the VNF life-cycle and

deals with global resources management in NFVIs interacting

with the VIMs. The VIMs interact with the infrastructure layer

in order to manage and orchestrate the virtual resources which

are required for the execution of the VNFs. In this work,

we consider two general purpose VIMs: OpenStack Nova and

HashiCorp’s Nomad. Note that we refer to Nomad as a VIM

while it is also commonly referred to as an orchestrator. We do

it to be consistent with the ETSI NFV architectural model that

separates the Orchestrator (NFVO) from the VIM (Figure 1).

OpenStack is a Cloud platform designed to manage large-

scale computing resources in a single administrative domain.

OpenStack is composed of different sub-projects. Among

them, Nova provides the functionality for orchestrating and

managing the computing resources. Its architecture envisages

a single Nova node and a number of compute nodes. The Nova

node schedules the computing tasks and manages the life-cycle

of the virtual computing resources, while the compute nodes

run locally in the Infrastructure nodes and interact with the

local virtualization managers (Hypervisors). Among the other

subprojects in OpenStack, the most important are: Keystone,

the identity management service; Glance, the image store;

Cinder, the storage service; Neutron, the networking as a

service component; Horizon, the official dashboard (GUI) of

the project.

Nomad by HashiCorp is a minimalistic cluster manager and

job scheduler, which has been designed for micro services

and batch processing workloads. Once compiled, it is a self-

contained executable which provides in a small binary all the

functionality of a resource manager and of a scheduler. Nomad

can work both in Multi-Datacenter and Multi-Region scenar-

ios. In the Nomad architecture, there are two types of nodes:

Servers and Clients. The Server takes care of scheduling

and all the Server nodes participate in scheduling decisions.

Nomad Clients are the resource managers and locally run the

jobs submitted by the Servers. Jobs are the unit of work in

Nomad; they are composed of one or more task groups, which

are themselves collections of tasks.

There are important differences between OpenStack Nova

and Nomad. OpenStack is a complete Cloud suite composed

of 9 core projects and a number of side projects; it provides a

large set of functions that are essential for managing a Cloud

infrastructure but which could add unnecessary overhead when

employed in the NFV context. On the other hand, Nomad is

packed in a single executable with a small footprint (about

30 MB). It is focused on a minimal complete functional set

and thus only contains what is strictly necessary to schedule

the virtual computing resources and to instantiate them in an

Infrastructure node.

A common characteristic of the Nova and Nomad VIMs is

that they do not focus on a specific virtualization technology,

but provide an extensible framework to support different

types of virtual computing resources. Other projects, such

as Kubernetes [9], are designed for a specific virtualization

technology (in this case containers), and modifying them to

support the instantiation of Unikernels or VMs would require

massive changes.

III. MODELLING APPROACH

The proposed general model of the VM instantiation process

is shown in Figure 2. We decompose the operations among

the VIM core components, the VIM local components and the

Compute resource/hypervisor. The VIM core components are

responsible for receiving the VNF instantiation requests (i.e.,

the initial request in Figure 2) and for choosing the resources

to use, i.e., the scheduling. This decision is translated into a set



Fig. 2. VIM instantiation general model

of requests which are sent to the VIM local components. These

are located near the resources and are responsible for enforcing

the decisions of the VIM core components by mapping the

received requests to the corresponding hypervisor technology

API calls. These APIs are typically wrapped by a driver,

which is responsible for instructing the Compute resource to

instantiate and boot the requested VNFs.

Figure 3 shows how the Nova and Nomad components

can be mapped to the proposed reference model. In the next

subsections, we provide a detailed analysis of the operations

of the two VIMs. As for the Compute resource/hypervisor, in

this work we focus on Xen [10], an open-source hypervisor

commonly used as resource manager in production clouds.

Xen can be configured to use different toolstacks (tools to

manage guests creation, destruction and configuration).

A. Modelling OpenStack Nova

Figure 4 shows the scheduling and instantiation process

for OpenStack Nova. The requests are submitted to the Nova

API using the HTTP protocol (REST API). The Nova API

component manages the initial requests and stores them in the

Queue Server. At this point, an authentication phase towards

Keystone is required. The next step is the retrieval of the

image from Glance, which is required for the creation of

virtual resources. At the completion of this step, the Nova

Scheduler is involved: this component performs scheduling

tasks by taking the requests from the Queue Server, deciding

the Compute nodes where the guests should be deployed and

sending back its decision to the Nova API (passing through

the Queue Server). The components described so far are

mapped to the VIM core components, in our model. After

receiving the scheduling decision from the Nova Scheduler, the

Nova API contacts the Nova Compute node. This component

manages the interaction with the specific hypervisors using

the proper toolstack and can be mapped (along with Nova

Network) to the VIM local components. The VM instantiation

phase can be divided in two sub-steps: Network creation and

Spawning. Once this task is finished, Nova Compute sends

all the necessary information to libvirt, which manages the

spawning process instructing the Xen hypervisor to boot the

virtual machine. When the completion of the boot process is

confirmed, Nova Compute sends a notification and the Nova

API confirms the availability of the new VM. At this point the

Fig. 3. Mapping of the reference model to the considered VIMs

Fig. 4. VIM instantiation model for OpenStack Nova

machine is ready and started. The above description, reflected

in Figure 4, is a simplified view of the actual process: for

sake of clarity many details have been omitted. For example,

the messages exchanged between the components traverse the

messaging system (Nova Queue Server, which is not shown),

and at each step the system state is serialized in the Nova DB

(not shown).

B. Modelling Nomad

The scheduling and instantiation process for Nomad is

shown in Figure 5. According to our model (cf. Figure 3),

the Nomad Server is mapped to the VIM core components.

It receives the requests for the instantiation of VMs (jobs)

through the REST API. Once the job has been accepted

and validated, the Server takes the scheduling decision and

selects which Nomad Client node to run the VM on. The

Server contacts the Client sending an array of job IDs. As

response the Client provides a subset of IDs which are the

ones that will likely be executed in this transaction. The Server

acknowledges the IDs and the Client executes these jobs.

The Nomad Client is mapped to the VIM local components

and interacts with compute resources/hypervisors. In Xen, this



Fig. 5. VIM instantiation model for Nomad

interaction is done via a user-level toolstack, of which there

are several choices. We used XL (see section IV), the default

Xen toolstack, to interface with the local Xen hypervisor.

XL provides a command line interface for guest creation

and management. The Client executes these jobs loading the

Nomad Xen driver, which takes care of the job execution

interacting with the XL toolstack. The instantiation process

takes place and once completed the Client notifies the Server

about its conclusion. Meanwhile the boot process of the VM

starts and continues asynchronously with respect to the Nomad

Client.

IV. VIM MODIFICATIONS TO BOOT MICRO-VNFS

We designed and implemented some modifications in the

two VIMs in order to be able to instantiate Micro-VNFs based

on ClickOS using Nova and Nomad.

The main reasons for these adaptations lie in the peculiar-

ities of the ClickOS Unikernel Virtual Machines compared

to regular VMs. A regular VM can boot its OS from an

image or a disk snapshot that can be read from an associated

block device (disk). The host hypervisor instructs the VM

to run the boot loader that reads the kernel image from the

block device. On the other hand, we are interested in ClickOS

based Micro-VNFs, provided as a tiny self-contained kernel,

without a block device. These VMs need to boot from a so-

called diskless image. When instantiating such VMs, the host

hypervisor reads the kernel image from a file or a repository

and directly injects it in the VM memory.

For OpenStack, we enabled the boot of diskless images

targeting only one component (Nova Compute) and a specific

toolstack, i.e. Libvirt. We selected this toolstack because it

supports libxl, which is the default Xen toolstack API. We first

implemented the minimal set of changes to the Libvirt driver

as needed to instantiate the ClickOS VMs. In particular, we

modified the XML description of the guest domain provided

by the driver, changing the XML description on the fly before

the creation of the domain. We did not patch the OpenStack

image store (Glance) because a mainstream patch was out

of the scope of our work. We resorted to a simple hack to

trigger the execution of our code needed to boot ClickOS

VMs, adding a new image to the store with a specific image

name. When this specific name is selected for instantiation,

our patches to the Nova compute Libvirt driver are executed.

For what concerns Nomad, this VIM supports different

types of workload through the driver framework. In particular

the following workload types have built-in support: Docker,

Java VMs and QEMU/KVM. Starting from the QEMU driver,

we developed a new Nomad driver for Xen, called XenDriver.

The new driver communicates with the XL Xen toolstack and

it is also able to instantiate a ClickOS VM.

By extending the driver framework we automatically added

the support in Nomad for Xen-type jobs without the need to

also modify the Server. The drivers are loaded at boot time

and the supported drivers are communicated to the Servers in

the context of the Client’s registration. Therefore, using the

standard Nomad CLI or a HTTP client we can create Xen

jobs and submit them to the Server.

We define as stock the VIM versions that only include the

modifications required to boot the ClickOS VMs. We analysed

the time spent by the stock VIMs during the different phases

of the driver operations. Then, taking into account the results,

we proceeded with an optimization trying to remove those

functions/operations not directly needed to instantiate Micro-

VNFs. We define as tuned these optimized versions.

In Nomad it was relatively easy to introduce the support for

booting from diskless images thanks to its simple architecture

and to the flexibility of the nomad driver framework. It

was more difficult to understand how to modify OpenStack,

because of its larger codebase, supporting several types of

hypervisors, each of these with more than one toolstack.

Our patches to OpenStack Nova and Nomad Xen driver are

available at [11].

V. EXPERIMENTAL RESULTS AND PERFORMANCE TUNING

In order to evaluate the VIM performances in the VM

scheduling and instantiation phase, we combined different

sources of information. As a first step, we analyzed the

message exchanges in order to obtain coarse information about

the beginning and the end of the different phases of the VM

instantiation process. The analysis of messages is a convenient

approach as it does not require modification of the source code.

For this analysis, we developed a VIM Message Analyzer tool

with a Python script and the Scapy [12] library. The VIM

Message Analyzer (available at [11]) is capable of analyzing

Nova and Nomad message exchanges.

For a more detailed breakdown of the timings for spe-

cific components or phases, we inserted timestamp logging

instructions into the code of the Nomad Client and Nova

Compute nodes. We generated the workload for OpenStack

using Rally [13], a well known benchmarking tool. For the

generation of the the Nomad workload, instead, we developed

the Nomad Pusher tool. It is an utility written in the GO

language, which can be employed to programmatically submit

jobs to the Nomad Server.



(a) ClickOS instantiation time breakdown on OpenStack (b) ClickOS spawning time breakdown on Nova-compute

(c) ClickOS instantiation time breakdown on Nomad (d) ClickOS spawning time breakdown on Nomad

Fig. 6. VIMs micro-NFV (ClickOS) instantiation and spawn time[s] breakdown

We executed experiments to evaluate the performance of

the considered VIMs. We present here two main results: i) the

total time needed to instantiate a ClickOS VM (representing a

Micro-VNF); ii) the timing breakdown of the Spawning pro-

cess in Nova and of the Driver execution in Nomad. The first

result is based on the VIM Message Analyzer we developed.

The timing breakdown was obtained with the approach of

inserting timestamp loggers into the source code of the VIMs.

All results were obtained by executing a test of 100 replicated

runs, in unloaded conditions. Error bars in the figures denote

the 95% confidence intervals of the results. In each run we

requested the VIM to instantiate a new ClickOS VM. The VM

was deleted before the start of the next run. Our experimental

set-up comprised two hosts with an Intel Xeon 3.40GHz quad-

core CPU and 16GB of RAM. One host (hereafter referred

to as HostC) was used for the VIM core components, the

other host (HostL) for the VIM Local components and the

Compute resource. We used Debian 8.3 operating systems with

Xen-enabled v3.16.7 Linux kernels. Both hosts were equipped

with two network interfaces at 10 Gb/s: one interface was

used as the management interface and the other one for the

direct interconnection of the host (data plane network). In

order to emulate a third host running OpenStack Rally and

Nomad Pusher, we created a separated network namespace

using the iproute2 suite in the HostC, then we interconnected

this namespace to the data plane network.

A. OpenStack Nova Experimental Results

For the OpenStack setup, we run Keystone, Glance, Nova

orchestrator, Horizon, and the other components in HostC,

while we run Nova Compute and Nova Network in HostL.

We use the modifications presented in Section IV and the

Libvirt/libxl support in OpenStack in order to boot ClickOS

Xen machines.

With reference to Figure 4, we report in Figure 6a the mea-

surements of the instantiation process in OpenStack, separated

for each component. The upper horizontal bar (Stock) refers

to the OpenStack version that only includes the modifications

to boot the ClickOS VMs. The experiment reports a total

time exceeding two seconds which is not adequate for highly

dynamic NFV scenarios. Analyzing the timing of the execution

of the single components, we note that most of the time is

spent during the spawning phase while the other components

account for around 0.5 seconds.

In Figure 6b (upper horizontal bar), we show the details of

the spawning phase which is split in tree phases: 1) Create

image, 2) Generate XML and 3) Libvirt spawn. The first two

are executed by the Nova Libvirt driver and the last one is

executed by the underlying Libvirt layer. The Nova Libvirt

driver also executes some network configuration steps which

are not shown, as they happen in parallel with the Create image

phase, which always terminates after the network configuration

has finished. By analyzing the timing of the stock version,

we can see that the Create image is the slowest step with a

duration of about 1 second. This step includes operations such

as the creation of log files and the creation of the folders to

store Glance images. The original OS image (the one retrieved

from Glance) is re-sized in order to meet user requirements

(the so called flavors in OpenStack’s jargon). Moreover, if

it is required, the swap memory or the ephemeral storage

are created and finally some configuration parameters are

injected into the image (e.g. SSH key-pair, network interface

configuration). Considering these results, we focused on this

step in our tuning of the OpenStack performance (see V-C).

The Generate XML and Libvirt spawn steps introduce a

total delay of 0.4 seconds, but optimizing these steps is non-

trivial as none of the performed operations can be skipped

or significantly reduced. During the Generate XML step, the

configuration options of the guest domain are retrieved and

then used to build the guest domain description (the XML file

given as input to Libvirt). For instance, options such as the

number of CPUs and CPU pinning are inserted in the XML



file. Once this step is over, the libxl API is invoked in order

to boot the VM. When the API returns, the VM is considered

spawned, terminating the instantiation process. In this test we

are not considering the whole boot time of the VM, as this

is independent from the VIM operations, and thus out of the

scope of this work. The considered spawning time measures

only the time needed to create the Xen guest domain.

B. Nomad Experimental Results

According to the Nomad architecture, the minimal deploy-

ment comprises two nodes. Therefore, we deployed a Nomad

Server, which performs the scheduling tasks, on HostC and

a Nomad Client, which is responsible for the instantiation

of virtual machines, on HostL. In Section III, we identified

two major steps in the breakdown of the instantiation process:

Scheduling and Instantiation. The upper horizontal bar in

Figure 6c reports the results of the performance evaluation

for the stock Nomad. The total instantiation time is much

lower than the one obtained for OpenStack. This result is not

surprising: as discussed in Section II, Nomad is a minimalistic

VIM providing only what is strictly needed to schedule the

execution of virtual resources and to instantiate them. Looking

at the details, the scheduling process is very light-weight, with

a total run time of about 50 ms. The biggest component in the

instantiation time is the spawning process which is executed by

the XenDriver. Diving in the driver operations, we identified 4

major steps: Download artifact, Init Environment, Spawn, and

Clean, as reported in in Figure 6d. In the first step, Nomad

tries to download the artifacts specified by the job. For a Xen

job, the Client is required to download the configuration file

describing the guest and the image to load. This part adds a

delay of about 40 ms and can be optimized or entirely skipped.

Init Environment and Clean introduce a low delay (around 20

ms) and are interrelated: the former initializes data structures,

creates log files and folders for the Command executor, the lat-

ter cleans up the data structures once the command execution

is finished. The XL spawn is the step which takes longer but

by studying the source code we found no room to implement

further optimizations: indeed the total spawning measured time

is around 100 ms. Considering a light overhead introduced by

the Command executor the time is very similar to the what

we obtain by running directly the XL toolstack. The overall

duration of the spawning phase is 160 ms, lower that the 280

ms for the instantiation phase reported in Figure 6c. This is

due to the notification mechanism from the client towards the

server. It uses a lazy approach for communicating the end of

the scheduled jobs: when the message is ready to be sent,

the client waits for a timer expiration to attempt to aggregate

more notifications in a single message. This means that the

instantiation time with Nomad is actually shorter than the one

shown in Figure 6c.

C. Performance Tuning Results

The performance measurements for Nova results reported

in Section V-A show that most of the instantiation time is

spent on the Create image operation. Thus we focused on

optimizing this phase. The “tuned” horizontal bar in Figure 6a

reports the obtained result. The reduction of the instantiation

time highlights that the advantages of using Unikernels with

respect to a full fledged OS are not only the shorter boot times:

specific VIM optimizations can be performed due to their

characteristics. We are using a tiny diskless VM, which means

we can skip most of the actions performed during the image

creation step. For example, we do not need to resize the image

in order to match the flavor disk size. Moreover, unikernels

provide only the functionality needed to implement a specific

VNF, so it is unlikely to have an SSH server running on it,

hence SSH key-pairs configuration is not needed. Furthermore,

if a Micro-VNF does not require a full IP stack, the injection of

the network configuration in the image is useless. Indeed, some

Micro-VNFs need only to have configured the bridge on which

it has to be attached. Implementing these optimizations we are

able to reduce the spawning time down to 0.4 s (Figure 6b,

bottom bar) obtaining a reduction of about 70% compared

to the stock version of OpenStack. Looking at the overall

instantiation time, the relative reduction (Figure 6a, bottom

bar) is about 45%, down to 1.15 s from 2.1 s for the stock

OpenStack.

Regarding Nomad, we already observed that the instantia-

tion time are smaller, in the order of 0.3 s (or 0.2 s if we

do not consider the notification delay from Nomad Client to

Nomad server). This can be explained by the following: i) the

scheduler in the Nomad Server is very lightweight compared

to OpenStack scheduler and its functionality is much simpler;

ii) in the client we have implemented from scratch a new

Nomad driver for Xen (cf. Section IV) and hence included only

code in the driver which is strictly necessary to interact with

XL. Starting from our initial implementation, we introduced

further improvements streamlining the Download Artifact step

of the XenDriver, assuming that the images of the Micro

VNFs can be stored locally in the Nomad Client. Pursuing

this approach we can reduce the Driver operation of about 30

ms (see Figure 6d).

VI. RELATED WORK

VIM performance evaluation is a topic addressed also by

other works. In [14], [15], [16] authors compare the per-

formance of OpenStack versus other projects (CloudStack,

OpenNebula, Eucaliptus). However, the performances of VIMs

are analyzed in terms of time needed to instantiate fully

fledged VMs and they are mainly focused on mere bench-

marking without a deep analysis of the tasks performed during

the instantiation. On the other hand in [17], [18], authors

consider only OpenStack and focus on particular aspects such

as networking components rather than the scheduling.

Other works (such as [5], [19], [2]) focus on the perfor-

mance of ClickOS and of the NFVI. They demonstrate that it is

possible to guarantee low latency instantiation times for Micro-

VNFs and the suitability of ClickOS for the NFV use case.

Instead, our work is focused on the analysis of the performance

of VIMs and of their suitability in the NFV frameworks. In

[20], [21] the authors describe solutions covering the whole



NFV framework and for the implementation of ETSI MANO

specifications. Among these, solutions such as CloudBand,

CloudNFV and OpenNFV are proprietary and there are not

enough details available to include them in our analysis, while

OPNFV defines a general framework for NFV, and, as for the

VIM component, it employs OpenStack. However these works

do not cover the performances of the practical implementations

of the NFV framework.

In this context, OpenMANO is an open source projects pro-

viding a practical implementation of the NFV MANO archi-

tecture, according to the ETSI standardization. OpenMANO

has been recently incorporated by Open Source MANO [22],

an ETSI project that aims at developing an Open Source

NFV Management and Orchestration (MANO) software stack

aligned with ETSI NFV. TeNOR is another open source

project which implements the NFV MANO framework and in

[23] also reported a performance evaluation. However, their

evaluation only covers their own system and at a much higher

level, and thus is not comparable with our work.

Openvim is the implementation of an NFV Virtualized

Infrastructure Manager initially considered in the context of

the OpenMANO project. It is a lightweight Python program

which can operate efficiently, based only on SSH and Libvirt to

interface with the NFVI. In the near future, we plan to extend

our analysis to consider also Openvim. Note that OpenMANO

is now working to support different VIMs, and has started

supporting OpenStack in addition to Openvim.

VII. CONCLUSIONS

We described a general reference model of the VNF and

Micro-VNF instantiation process, and detailed this model for

two Virtual Infrastructure Managers (VIMs), OpenStack Nova

and Nomad. We provided measurements on the performance of

the instantiation process in an experimental setup, using ad-hoc

developed profiling tools. The tools we developed are available

as open source. Starting from an analysis of the measurements

results, we optimized the instantiation times of Micro-VNFs

by modifying the source code of the VIMs.

For the performance measurements we considered the basic

case of an unloaded system and of a very simple physical

deployment. We measured the instantiation time of a VM

considering a single request (no other background requests

in parallel), assuming that the requested VM is the first one

to be allocated/scheduled (the database of allocated VMs

is empty) and that only one target node is available for

deploying the VM. An important direction for future work

is to extend the analysis considering the impact of system

load on the performance. We plan to measure the average

instantiation times considering batches of incoming requests

with given rates (requests/s) and arrival patterns, as well as the

performance impact of the number of already allocated VMs

and of the number of target nodes to be deployed.

Another potential future direction of our work would be

to further improve the performance of the considered VIMs

through the optimization of other components which have

not been considered here (e.g., trying to replace the lazy

notification mechanism of Nomad with a reactive approach).

Finally, we plan to extend the analysis to other VIMs, in

particular, as already mentioned in Section VI, considering

Openvim from the OpenMANO project.

ACKNOWLEDGMENT

This paper has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No. 671566 (“Superfluidity”). This paper reflects

only the authors views and the European Commission is not

responsible for any use that may be made of the information

it contains.

REFERENCES

[1] “ETSI Network Function Virtualization.” [Online]. Available: http:
//www.etsi.org/technologies-clusters/technologies/nfv

[2] F. Manco et al., “The case for the superfluid cloud,” in 7th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 15), 2015.
[3] “Superfluidity project.” [Online]. Available: http://superfluidity.eu
[4] F. Huici et al., “Vms, unikernels and containers: Experiences on

the performance of virtualization technologies.” [Online]. Available:
https://www.ietf.org/proceedings/95/slides/slides-95-nfvrg-2.pdf

[5] J. Martins et al., “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation. USENIX Association, 2014, pp. 459–473.
[6] “OpenStack.” [Online]. Available: https://www.openstack.org
[7] “Nomad project.” [Online]. Available: https://www.nomadproject.io
[8] ETSI. Group for NFV, “Network Functions Virtualisation (NFV);

Management and Orchestration; Functional requirements specification,”
2016.

[9] “Kubernetes.” [Online]. Available: http://kubernetes.io
[10] “Xen project.” [Online]. Available: http://www.xenproject.org
[11] “VIM tuning and evaluation tools.” [Online]. Available: https:

//github.com/netgroup/vim-tuning-and-eval-tools
[12] “Scapy.” [Online]. Available: http://www.secdev.org/projects/scapy/
[13] “Openstack rally.” [Online]. Available: https://wiki.openstack.org/wiki/

Rally
[14] A. Paradowski et al., “Benchmarking the performance of openstack

and cloudstack,” in 2014 IEEE 17th International Symposium on

Object/Component-Oriented Real-Time Distributed Computing. IEEE,
2014, pp. 405–412.

[15] D. Steinmetz et al., “Cloud computing performance benchmarking and
virtual machine launch time,” SIGITE12, pp. 89–90, 2012.

[16] E. Caron et al., “Comparison on openstack and opennebula performance
to improve multi-cloud architecture on cosmological simulation use
case,” in Research Report RR-8421. INRIA, 2013, p. 23.

[17] G. Callegati et al., “Performance of network virtualization in cloud
computing infrastructures: The openstack case,” in Cloud Networking

(CloudNet), 2014 IEEE 3rd International Conference on. IEEE, 2014,
pp. 132–137.

[18] Litvinsk et al., “Experimental evaluation of openstack compute sched-
uler,” Procedia Computer Science, vol. 19, pp. 116–123, 2013.

[19] F. Manco et al., “Towards the super fluid cloud,” in ACM SIGCOMM

Computer Communication Review, vol. 44, no. 4. ACM, 2014, pp.
355–356.

[20] R.Mijumbi et al., “Management and orchestration challenges in network
function virtualization,” IEEE, 2016.

[21] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,” IEEE, 2015.

[22] “ETSI open source MANO.” [Online]. Available: https://osm.etsi.org/
[23] J. Riera et al., “Tenor: Steps towards an orchestration platform for multi-

pop nfv deployment,” in NetSoft Conference and Workshops (NetSoft),

2016 IEEE. IEEE, 2016, pp. 243–250.


