
uniprof: A Unikernel Stack Profiler
Florian Schmidt

NEC Laboratories Europe
�orian.schmidt@neclab.eu

ABSTRACT
Unikernels are increasingly gaining traction in real-world deploy-
ments, especially for NFV and microservices, where their low foot-
print and high performance are especially bene�cial. However, they
still su�er from a lack of tools to support developers. uniprof is a
stack pro�ler that supports Xen unikernels on x86 and ARM and
does not requires any code changes or instrumentation. Its high
speed and low overhead (0.1% at 100 samples/s) makes it usable even
in production environments, allowing the collection of realistic and
highly credible data.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software maintenance tools;

KEYWORDS
call stack pro�ling, introspection, Xen, unikernels

ACM Reference format:
Florian Schmidt. 2017. uniprof: A Unikernel Stack Pro�ler. In Proceedings of
SIGCOMM Posters and Demos ’17, Los Angeles, CA, USA, August 22–24, 2017,
3 pages.
DOI: 10.1145/3123878.3131976

1 INTRODUCTION
Unikernels [6, 7], long a topic in the research community, are start-
ing to receive more and more interest in real-world deployments.
Compared to full-featured virtual machines running commodity
operating systems, they provide extremely small VMs, which is
especially bene�cial for NFV [8, 9] and microservices [4]. For exam-
ple, a simple web server can have a binary size as low as 260 kB and
memory requirements as low as 1.2MB [4]. This facilitates large-
scale consolidation, supporting use cases such as VNF chaining,
while also keeping the strong isolation guarantees of virtualized
systems, providing secure multi-tenancy.

On top of that, unikernels generally provide much higher per-
formance than standard virtual machines. This is chie�y due to the
fact that the application and the operating system are compiled
into a single binary and share the same address space, which obvi-
ates time-consuming and performance-constraining system calls,
memory translations and context switches. While this removes the
innate security provided by system calls, this is not a problem for
unikernels: they only run a single application, so gaining control of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5057-0/17/08. . . $15.00
DOI: 10.1145/3123878.3131976

the “operating system” part of the unikernel provides no exploitable
bene�t to the application; for security between di�erent virtual ma-
chines, unikernels instead rely on the isolation mechanisms of the
underlying virtual machine monitor (hypervisor).

However, the adoption of unikernels as a new and highly-
performant technology is hampered by the need to develop new
unikernel-compatible software, or to adopt existing one. This is
exacerbated by the lack of tools to support developers. Contrary
to popular belief, debugging a unikernel is in fact simpler than
debugging a standard operating system: Since the application and
OS are linked into a single binary, debuggers can be used on the
running unikernel to debug both application and OS code at the
same time. While this requires support from the hypervisor, gdb,
to give a popular example, contains support for both Xen and KVM
virtual machine debugging. Nevertheless, especially in the area of
pro�ling, unikernels still lack the rich toolsets that full operating
systems such as Linux or BSD provide.

The goal of uniprof is to provide such a tool. uniprof is a stack
pro�ler that provides the following functionality:

• uniprof pro�les a running unikernel from the outside, re-
quiring no changes to the code;

• it introduces only minimal overhead, allowing pro�ling of
unikernels in production environments;

• it supports Xen [1] unikernels, running both on x86 and
ARM, both with and without frame pointers;

• its output can be used to produce insightful visualizations,
aiding the developer in identifying bottlenecks.

uniprof is available as open source at https://github.com/cnplab/
uniprof/.

2 STACK PROFILING
Stack pro�ling is done by collecting a number of stack traces. Each
stack trace gives a snapshot of the currently run functions, and
the functions that lead to the current function being called. This
is generally done by using the instruction pointer (IP) and frame
pointer (FP) registers. The approach is shown in Figure 1. The IP
gives the �rst address of the trace, to the current instruction, while
the FP points to the bottom of the current function’s stack frame. As
each function is called, registers are pushed onto the stack before
the function starts its execution. The order is de�ned by calling
conventions, but in a typical one, the FP is the �rst register being
pushed, producing a linked list of FPs down to the initial function.
The return address is also pushed onto the stack in a �xed location,
hence by traversing the FPs and reading the return addresses, a
stack trace is created. With the help of a symbol table, these raw
addresses can be translated into functions (and o�sets into the
function). Note that one advantage of a unikernel is that, due to
the uni�ed address space, all function locations are static, and it is
much simpler to create a symbol table than for normal operating
systems with applications running of them: the unstripped binary

https://github.com/cnplab/uniprof/
https://github.com/cnplab/uniprof/

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA Florian Schmidt

Stack

Local variables

Frame pointer

[NULL]

Return address
Other registers

Local variables

Frame pointer
Return address
Other registers

Local variables

St
ac

k
gr

o
w

th
 d

ir
ec

ti
o

n

CPU Registers

IP

FP …

… …

0x486d

0x4e48

0x2f0d

raw
stack
trace

symbol
table

other_func+0x3

one_func+0x13

main+0x9e

resolved
stack
trace

Figure 1: A stackwalk. The IP provides the current execution
address. The FPs point to the start of the frame, creating a
linked list of frames. The return addresses provide the other
stack trace entries.

of the unikernel will contain everything that is needed for address
resolution.1

By regularly sampling the stack in this way, we get important
information not only about which functions consume a large per-
centage of the unikernel’s execution time, but also which call paths
lead to those heavy hitters.

3 UNIPROF
One of the largest advantages of stack pro�lers is that investigated
code does not need any special annotations or debug support. The
stack trace is done from the outside, with uniprof stopping the
unikernel momentarily – to prevent race conditions from the stack
changing while it is being traversed – walking the stack, and un-
pausing. One of the most important factors of stack pro�lers is
their performance. This does not only matter for convenience rea-
sons, but also in�uences the �delity of their results. A pro�ler that
takes too long to walk the stack will keep the application paused
for longer times, not only slowing it down, but also potentially
changing its behavior (e.g., missing timeouts). Hence, performance
is the core concern of uniprof.

A pro�ling cycle starts with instructing Xen to pause the VM.
uniprof then receives the content of the virtual machine’s “virtual
CPU” registers via getvcpucontext. After doing the actual stack
walk, the VM is unpaused again. Figure 2 shows the performance
of uniprof for two di�erent supported machines, an Intel Xeon E5
CPU at 3.7GHz and an ARM Cortex A7 at 1GHz. The time the
stack walk itself takes depends on the depth of the stack. These
tests were run on a unikernel that kept a constant stack depth of
10, not an unusually low depth for unikernels, which tend to have
fewer indirection steps due to their uni�ed binary setup. Stack
walks �nish in 12 µs on the x86 machine, and in 51 µs on the ARM
one, roughly correlating with the speed di�erence of the machines.
Thus, running about 1000 samples/s produces an overhead of only
1% for x86 and 5% for ARM, and only roughly a tenth of that at 100
samples/s.2 This means that uniprof’s impact on the performance

1Virtualized addresses seen by the VM due to its virtualization still need to be translated,
but this is independent of the symbol table and is done by uniprof on-the-�y.
2Uneven or prime sample rates are a standard practice to reduce the risk of sampling
in lock-step with regular events in the pro�led code, which would skew the results.

x86 @ 3.7 GHz ARM @ 1 GHz
0

10

20

30

40

50

60

R
u
n
 t

im
e
 f

o
r

st
a
ck

tr
a
ce

 [
u
s]

stack walk

pause()

unpause()

getvcpucontext()

none 101 997 9973
Samples/s

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

O
v
e
rh

e
a
d

x86 @ 3.7 GHz

ARM @ 1 GHz

Figure 2: uniprof does a single stack walk in a fewmicrosec-
onds. Thus even at nearly 1000 samples/s, the overhead is 1%
for a fast x86 machine and below 5% for a slower ARM.

Flame Graph Search

call_main
main

netfrontif_transmit
etharp_output

ip4_output
tcp_output

ip4_input

ip4_output_if_opt_src

monotonic_c..
netfront_get_responses

tcp_input

netfrontif_rx_handler

netfront_rx

netfront_xmit_pbuf

schedule
monotonic_..

ethernet_input

blkfront_aio_poll

Figure 3: Stack pro�ling visualization as �ame graph [3]
shows long-running and/or repeatedly-called functions and
identi�es potential bottlenecks.

of the unikernel under test is very low, even at high sampling rates,
allowing it to be used even on production systems.

One further advantage of uniprof is that it does not require the
availability of frame pointers. While this is the typical approach to
creating stack traces, some highly optimized software repurposes
the FP register as another general-purpose register to increase
performance. To pro�le such code, uniprof uses libunwind [5],
which in turn uses DWARF [2] call frame information, as produced
by compilers such as gcc. While not changing the behavior of the
binary itself, it contains information that allows for every point in
the code to reconstruct the size of the frame at that point. Iteratively,
the beginning of the current frame can be found, the return address
be extracted, and the frame size for that address be calculated,
until the beginning of the stack is reached. A libunwind version
patched for use with Xen is available at https://github.com/cnplab/
libunwind.

Finally, the output of uniprof can be fed into visualization
tools. It is set up to directly interface with �ame graphs [3],
a popular tool to identify performance bottlenecks in software.
Figure 3 shows an example for a unikernel doing network
I/O. In this example, blkfront_aio_poll, netfornt_rx, and
netfront_xmit_pbuf are the main bottlenecks.

ACKNOWLEDGMENTS
This paper has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
no. 671566 (“Super�uidity”). This paper re�ects only the author’s
views and the European Commission is not responsible for any use
that may be made of the information it contains.

https://github.com/cnplab/libunwind
https://github.com/cnplab/libunwind

uniprof: A Unikernel Stack Profiler SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew War�eld. 2003. Xen and the Art of
Virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (SOSP ’03). ACM, New York, NY, USA, 164–177. https://doi.
org/10.1145/945445.945462

[2] Free Standards Group–DWARF Debugging Information Format Workgroup.
DWARF Debugging Format, Version 3. http://dwarfstd.org/doc/Dwarf3.pdf.
(Dec. 2005).

[3] Brendan Gregg. 2016. The Flame Graph. Commun. ACM 59, 6 (May 2016), 48–57.
https://doi.org/10.1145/2909476

[4] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri Volchkov, Florian
Schmidt, Kenichi Yasukata, Michio Honda, and Felipe Huici. 2017. Unikernels
Everywhere: The Case for Elastic CDNs. In Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’17). ACM, New York, NY, USA, 15–29. https://doi.org/10.1145/3050748.3050757

[5] The libunwind project. http://www.nongnu.org/libunwind/. ([n. d.]).

[6] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: Library Operating Systems for the Cloud. SIGPLAN Not. 48, 4 (March
2013), 461–472. https://doi.org/10.1145/2499368.2451167

[7] Anil Madhavapeddy and David J. Scott. 2014. Unikernels: Rise of the Virtual
Library Operating System. Commun. ACM 57, 1 (Jan. 2014), 61–69. https:
//doi.org/10.1145/2541883.2541895

[8] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (NSDI’14). USENIX Association, Berkeley, CA, USA,
459–473. http://dl.acm.org/citation.cfm?id=2616448.2616491

[9] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Salsano,
Nicola Blefari Melazzi, and Felipe Huici. 2016. On the Fly TCP Acceleration with
Miniproxy. In Proceedings of the 2016 Workshop on Hot Topics in Middleboxes and
Network Function Virtualization (HotMIddlebox ’16). ACM, New York, NY, USA,
44–49. http://doi.acm.org/2940147.2940149

https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
http://dwarfstd.org/doc/Dwarf3.pdf
https://doi.org/10.1145/2909476
https://doi.org/10.1145/3050748.3050757
http://www.nongnu.org/libunwind/
https://doi.org/10.1145/2499368.2451167
https://doi.org/10.1145/2541883.2541895
https://doi.org/10.1145/2541883.2541895
http://dl.acm.org/citation.cfm?id=2616448.2616491
http://doi.acm.org/2940147.2940149

	Abstract
	1 Introduction
	2 Stack Profiling
	3 uniprof
	Acknowledgments
	References

