
SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

On the Fly Orchestration of Unikernels:
Tuning and Performance Evaluation
of Virtual Infrastructure Managers

Pier Luigi Ventre∗† Paolo Lungaroni† Giuseppe Siracusano∗§ Claudio Pisa†

Florian Schmidt§ Francesco Lombardo† Stefano Salsano∗†
∗University of Rome Tor Vergata, Italy †CNIT, Italy §NEC Labs Europe, Germany

Abstract—Network operators are facing significant challenges meeting the demand for more bandwidth, agile infrastructures,
innovative services, while keeping costs low. Network Functions Virtualization (NFV) and Cloud Computing are emerging as key trends
of 5G network architectures, providing flexibility, fast instantiation times, support of Commercial Off The Shelf hardware and significant
cost savings. NFV leverages Cloud Computing principles to move the data-plane network functions from expensive, closed and
proprietary hardware to the so-called Virtual Network Functions (VNFs). In this paper we deal with the management of virtual
computing resources (Unikernels) for the execution of VNFs. This functionality is performed by the Virtual Infrastructure Manager (VIM)
in the NFV MANagement and Orchestration (MANO) reference architecture. We discuss the instantiation process of virtual resources
and propose a generic reference model, starting from the analysis of three open source VIMs, namely OpenStack, Nomad and
OpenVIM. We improve the aforementioned VIMs introducing the support for special-purpose Unikernels and aiming at reducing the
duration of the instantiation process. We evaluate some performance aspects of the VIMs, considering both stock and tuned versions.
The VIM extensions and performance evaluation tools are available under a liberal open source licence.

Index Terms—Network Function Virtualization, Open Source, Virtual Infrastructure Manager, Virtual Network Function, Performance,
Tuning, OpenStack, Nomad, OpenVIM, ClickOS, Unikernel

F
1 INTRODUCTION

N ETWORK Function Virtualization (NFV) is a new pa-
radigm [1], drastically changing the design of the

current telecommunication networks. NFV introduces soft-
ware components in place of specialized network hardware.
These software modules, called Virtual Network Functions
(VNFs), run using virtual computing resources. Telco op-
erators are looking to Cloud Computing [2] best practices
and principles to build “clouds” in their networks (core, ag-
gregation, edge). Flexibility, agility, fast instantiation times,
consolidation, Commercial Off The Shelf (COTS) hardware
support and significant cost savings are fundamental for
meeting the requirements and facing the challenges of the
new generation of telco networks.

Different virtualization approaches can be used to sup-
port VNFs: Virtual Machines (VMs), tinified VMs, Uniker-
nels and containers (see [3], [4], [5] for a description of these
concepts and an exhaustive comparison). Considering the
performance aspects, containers are currently the preferred
solution, as they deliver a lighter-weight virtualization
technology and better run time performance in terms of
throughput and delay compared to VMs. The Unikernels
are specialized VMs and can provide similar performance
figures than containers [3], but much better security prop-
erties. Unikernels have the ability to provide efficient, high-
specialized, reusable, micro-operations, which can be very
useful in NFV scenarios. They offer very good run time per-
formance and very low memory footprint and instantiation
time. The most important reason to choose the Unikernels
as virtualization technology is that they have very good
isolation and security properties, making them suitable to
multi-tenancy scenarios. Their applicability goes beyond the
NFV use cases, they can be used also to run “high level
applications” like a Web Server. In [6], Unikernels role is re-

shaped and they are placed at the ground of the next gener-
ation Clouds. In [7] Unikernels are mentioned as a key tech-
nology for the evolution of the modern operating systems.
A witness of the increasing importance of Unikernels is the
Unicore/Unikraft project [8] recently incubated by the Xen
project. For completeness of this overview of virtualization
technology, we mention the tinified VMs, such as the ones
yielded by the Tinyx/LightVM approach [4]. They deliver a
high degree of flexibility with good run time performance
compared to full-fledged VMs, but their performance does
not quite reach that of containers or Unikernels.

Current NFV technology mostly targets scenarios where
VNFs are run by full-fledged Virtual Machines (VMs) (like
for example in [9]) and where the life-cycle operations, such
as VNF creation, are in the time scale of minutes or several
seconds. In this context, Network Services are realized by
chaining and composing these big VMs. Other solutions (for
example [10]) leverage container-based solutions instead of
full-fledged VMs. The concept of a Superfluid NFV approach
has been first illustrated in [11], [12]. It aims to support
highly dynamic scenarios, in which the VNFs are instanti-
ated “on the fly” following the service requests, reducing
the time scale of the life-cycle operations of virtualized re-
sources down to few milliseconds. In these scenarios, VNFs
tend to become small and highly specialized, i.e., elemen-
tary and reusable components targeting micro-operations.
Complex services can be built through the “chaining” of
these special-purpose VNFs. The instantiation times of the
virtualized resources could be required to stay in the order
of milliseconds. The architecture proposed in [13] follows
the Superfluid NFV approach considering the decomposi-
tion of services into smaller reusable components and the
highly dynamic instantiation of virtualized resources. The

ar
X

iv
:1

80
9.

07
70

1v
1 

 [
cs

.D
C

] 
 1

7 
Se

p 
20

18



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

Unikernel virtualization technology is supported as a mean
to achieve the performance targets (instantiation time, small
memory footprints) and provide high security by proper
isolation of the virtualized resources.

In this work we focus on ClickOS [14], a Xen-based
Unikernel tailored for NFV appliances, which is able to
provide highly efficient raw packet processing. It has a small
footprint (around 5 MB when running), can be instantiated
within around 30 milliseconds, processes up to 10Gb/s of
traffic and does not need a disk to operate. In addition, it
benefits from the isolation provided by the Xen hypervisor
and the flexibility offered by the Click modular router.
Recent work [4] demonstrates that it is possible to guar-
antee lower latency instantiation times (in the order of few
msecs) for Unikernels, by using a customized hypervisor
and redesigning the toolstack to increase the efficiency.

Since Unikernels and a redesigned toolstack can pro-
vide an efficient implementation of the Network Functions
Virtualization Infrastructure (NFVI), we are stimulated in
shedding some light on the performances guaranteed by the
NFV framework as a whole, considering Superfluid NFV
use cases. In particular, we are interested on the instantiation
process of Unikernels in the NFV framework. Borrowing the
ETSI NFV terminology (see Figure 1) we focus on the Virtual
Infrastructure Manager (VIM), which controls and manages
the virtual resources in the NFVI. Existing open source so-
lutions, designed for less specialized Cloud infrastructures,
provide a solid base to build VIMs for NFVI. However, a
deeper analysis (see Section 3 and Section 7) reveals that
they do not support Unikernels and that there is room for
tailoring the instantiation process to the NFV scenario and
to enhance their performance.

This work extends [15] and addresses the above ques-
tion, providing a quantitative analysis of the VIMs under
evaluation. Moreover, we release as open source the cus-
tomized VIMs under analysis complemented with a rich set
of tools for their performance evaluation [16], [17]. The main
contributions of this work are the following:

• Analysis of the instantiation process of three VIMs:
Nomad [18], OpenVIM [17] and OpenStack with
Nova Network and with Neutron Network [19];

• Description of a general reference model of the VNF
instantiation process ;

• Modifications of these VIMs to integrate Xen hyper-
visor and instantiate ClickOS Unikernels;

• Realization of performance evaluation tools ;
• Evaluation of ClickOS VMs instantiation times in

OpenStack, Nomad and OpenVIM;
• Performance tuning of the VIMs to improve instanti-

ation times of ClickOS based VMs;

The purpose of the work is not to compare the three VIMs
to select the best one, but rather to understand how they
behave and find ways to reduce the instantiation times. The
rest of the paper is structured as follows: firstly, we give
some background information (Section 2) of NFV frame-
work and VIMs (Section 3). Section 4 describes the general
model of the VNF instantiation process and the specific
models for the three considered VIMs. In Section 5, the
modifications needed to boot Unikernels are illustrated. Sec-
tion 6 provides a performance evaluation of the Unikernels

Fig. 1: NFV architecture

instantiation process. Finally, Section 7 reports on related
work and in Section 8 we draw some conclusions and
highlight the next steps.

2 BACKGROUND ON NFV ARCHITECTURE

The building blocks of the ETSI NFV [1] and NFV MANO
(MANagement and Orchestration) [20] architecture have
been specified in the last years by the ETSI NFV Indus-
try Specification Group through a number of documents
describing the management and orchestration framework
for VNFs. Its main components are represented in Figure 1.
The VNFs leverage resources provided by the NFVI for the
execution of the network services. The NFVI layer is typ-
ically decomposed into compute, networking and storage
hardware resources provided by COTS hardware and by the
Hypervisor software which implements the Virtualization
layer abstracting the underlying hardware resources.

The NFV MANO components represented in the right
part of Figure 1 are responsible for the management of the
physical infrastructure and the management and orchestra-
tion of the VNFs. The NFVI’s resources are managed by
one or more VIMs, which expose northbound interfaces to
the VNF Managers (VNFM) and to the Network Functions
Virtualisation Orchestrator (NFVO). The VNFM performs the
lifecycle management of the VNFs. The associated VNF Cat-
alogue stores the VNF Descriptors (VNFDs), which describe
the structural properties of the VNFs (e.g. number of ports,
internal decomposition in components) and their deploy-
ment and operational behaviour. A VNF is decomposed into
one or more Virtual Deployment Units (VDUs) which can be
mapped to VMs or Containers to be deployed and executed
over the NFVI. The NFVO is responsible for the overall or-
chestration and lifecycle management of the Network Services
(NSs), which combine VNFs according to an interconnection
topology. A Network Service is represented by an NS Descrip-
tor (NSD), which captures the relationship between VNFs.
The NSDs are stored in an NS Catalogue and are used by the
NFVO during the deployment and operational management
of the services. The NFVO is also responsible for the on-
boarding and validation of the descriptors of VNFs and
NSs. In the aforementioned architecture the VIMs have the
key role of interacting with the infrastructure layer in order
to manage and orchestrate the virtual resources which are
required for the execution of the VNFs.



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

3 VIMS UNDER EVALUATION

In this work, we consider three general purposes VIMs:
OpenStack with Nova network and Neutron network;
OpenVIM from the OSM community; and finally Nomad
from HashiCorp. Note that we refer to Nomad as a VIM
while it is also commonly referred to as an orchestrator.
We do it to be consistent with the ETSI NFV architectural
model that separates the Orchestrator (NFVO) from the VIM
(Figure 1).

OpenStack is a Cloud platform designed to manage
large-scale computing resources in a single administrative
domain, and it aims at providing a solution for both public
and private clouds. OpenStack is composed of different sub-
projects. Among them, Nova provides the functionality for
orchestrating and managing the computing resources. Its
architecture envisages a single Nova node and a number
of compute nodes. The Nova node schedules the computing
tasks and manages the life-cycle of the virtual computing
resources, while the compute nodes run locally in the In-
frastructure nodes and interact with the local virtualization
managers (Hypervisors). Among the other sub-projects in
OpenStack, the most important are: Keystone, the identity
management service; Glance, the image store; Cinder, the
storage service; Nova network and Neutron, the networking
as a service components; and Horizon, the official dashboard
(GUI) of the project.

As mentioned above two networking as a service models
exist in OpenStack, providing two different implementa-
tions of the same service. The former, Nova network, is
the legacy model and is implemented as a sub-process
embedded in the Nova project. Even if Nova network is
now deprecated, it is still used in several deployments.
Neutron, the new networking as a service model, moves the
network functionality out of Nova, making the projects self-
contained, less-dependent on the latter and simplifying the
development process. It resolves some architectural flaws
by introducing a technology agnostic layer and enabling ex-
tensions through a plugins oriented framework. Moreover it
provides more functionalities to the end-users: complex net-
working topologies that go beyond the flat models and the
VLAN-aware model, better multi-tenancy with the support
of the tunneling protocols, load balancing, firewall services
and many others.

Nomad by HashiCorp is a minimalistic cluster manager
and job scheduler, which has been designed for micro
services and batch processing workloads. Once compiled,
it is a self-contained executable which provides in a small
binary all the functionality of a resource manager and of a
scheduler. In the Nomad architecture, there are two types
of nodes: Servers and Clients. The Servers take care of
scheduling decisions. The Clients are the resource managers
and locally run the Jobs submitted by the Servers (the Jobs
are the unit of work in Nomad). .

OpenVIM is the reference implementation of an NFV
VIM in the context of the ETSI MANO architecture. Orig-
inally developed as VIM of the OpenMANO suite, it is
now maintained under the umbrella of the OSM project
managed by ETSI. OpenVIM is designed as a single software
component which is able to manage the entire life-cycle of
the virtual infrastructure. Its internal data-model follows

Fig. 2: VIM instantiation general model

NFV recommendations [21]. On the northbound side it
offers an OpenStack-like REST API interface enhanced to
be compatible with the NFV MANO framework, while
on the southbound side it interacts with the infrastructure
(compute nodes) providing the physical resources for VNF
instantiation. The networking component assumes a flat net-
work topology, with the possibility of segregating tenants by
means of VLANs. The interaction with the NFVI is done by
means of SSH connections which transport the instructions
for libvirt, which in turn controls the hypervisors. At the
time of writing only the KVM/Qemu hypervisor is natively
supported by the OpenVIM project.

There are important differences between the VIMs under
evaluation; OpenStack is a complete and mature Cloud suite
composed of 11 core projects (without considering deploy-
ment tools) and a number of side components for a total
of 46 projects. It provides a large set of functions that are
essential for managing a Cloud infrastructure. Networking
components are very mature, they support a wide range of
technologies and they have built-in integration with several
SDN controllers which are suitable for the NFV use case.
At the same time, this wide range of functionalities and
sub-projects can add unnecessary overhead when employed
in the NFV context. A different architectural approach is
taken by the Nomad VIM: it is packed in a single executable
with a small footprint (about 30 MB), and it is focused on
a minimal complete functional set. Thus, it only contains
what is strictly necessary to schedule the virtual computing
resources and to instantiate them in an infrastructure node.
In-between the two approaches described so far, OpenVIM
provides a minimalistic VIM implementation targeting the
NFV use case and represents the reference implementation
for ETSI NFV. However, it is still in its infancy and it does
not reach the same level of maturity of OpenStack. More-
over, its future is still not clear inside the OSM community.

OpenStack and OpenVIM share an advanced network-
ing component and they do have support for an SDN
ecosystem. Concerning the development of new function-
ality, it is easier to provide extensions to Nomad and Open-
VIM, being smaller projects when compared to OpenStack.
A common characteristic between the VIMs under analysis,
is that they do not focus on a specific virtualization tech-
nology, but provide an extensible framework to support
different types of virtual computing workloads. Instead,
other projects, such as Kubernetes [22], are designed for a
specific virtualization technology (in this case containers),
and modifying them to support the instantiation of Uniker-



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

nels or VMs would require changes to the software design
and code base.

4 MODELLING APPROACH

The proposed general model of the VM instantiation process
is shown in Figure 2. We decompose the operations among
the VIM core components, the VIM local components and the
Compute resource/hypervisor. The VIM core components are
responsible for receiving the VNF instantiation requests (i.e.,
the initial request in Figure 2) and for choosing the resources
to use, i.e., the scheduling. This decision is translated into a
set of requests which are sent to the VIM local components.
These are located near the resources and are responsible for
enforcing the decisions of the VIM core components by map-
ping the received requests to the corresponding technology
API calls. These APIs are typically wrapped by a driver or,
borrowing from the OpenStack terminology, by a plugin,
which is responsible for instructing the Compute resource to
instantiate and boot the requested VNFs and their resources.

Figure 3 shows how the OpenStack, OpenVIM and No-
mad components can be mapped to the proposed reference
model. In the next subsections, we provide a detailed analy-
sis of the operations of the considered VIMs. Two mappings
have been presented for OpenStack due to the big archi-
tectural differences introduced by Neutron. The new stan-
dard OpenStack deployment uses Neutron as networking
component, while the so-called OpenStack Legacy version
uses Nova. As for the Compute resource/hypervisor, in
this work we focus on Xen [23], an open-source hypervisor
commonly used as resource manager in production clouds.
Xen can use different toolstacks (tools to manage guests
creation, destruction and configuration); while Nomad uses
xl, the others use libvirt. Regarding networking, we did not
consider the offloading to an SDN controller and we used
the built-in plugins of the VIMs.

4.1 Modelling OpenStack Legacy
Figure 4a shows the scheduling and instantiation process
for OpenStack Legacy. The requests are submitted to the
Nova API using the HTTP protocol (REST API). The Nova
API component manages the initial requests and stores them
in the Queue Server. At this point, an authentication phase
towards Keystone is required. The next step is the retrieval
of the image from Glance, which is required for the creation
of virtual resources. At the completion of this step, the
Nova Scheduler is involved: this component performs tasks
scheduling by taking the requests from the Queue Server,
deciding the Compute nodes where the guests should be
deployed and sending back its decision to the Nova API
(passing through the Queue Server). The components de-
scribed so far are mapped to the VIM core components, in
our model. After receiving the scheduling decision from
the Nova Scheduler, the Nova API contacts the Nova Com-
pute node. This component manages the interaction with
the specific hypervisors using the proper toolstack and can
be mapped (along with Nova Network) to the VIM local
components. The VM instantiation phase can be divided in
two sub-steps: Network creation and Spawning. Once this
task is finished, Nova Compute sends all the necessary
information to libvirt, which manages the spawning process

Fig. 3: Mapping of the reference model to the VIMs

instructing the Xen hypervisor to boot the virtual machine.
When the completion of the boot process is confirmed, Nova
Compute sends a notification and the Nova API confirms
the availability of the new VM. At this point the machine
is ready and started. The above description, reflected in
Figure 4a, is a simplified view of the actual process: for
sake of clarity many details have been omitted. For example,
the messages exchanged between the components traverse
the messaging system (Nova Queue Server, which is not
shown), and at each step the system state is serialized in the
Nova DB (not shown).

4.2 Modelling Openstack (with Neutron)

The VM instantiation process in OpenStack is similar to
the one described above for OpenStack Legacy, but relies
on Neutron for the network management. Provisioning a
new VM instance involves the interaction between multiple
components inside OpenStack. The main components in-
volved in the instantiation process are: Keystone, for authen-
tication and authorization; Nova (with its subcomponents
Nova API, Nova Scheduler and Nova Compute), for VM
provisioning; Glance, the image store component; Cinder,
to provide persistent storage volumes for VM instances;
Neutron, which provides virtual networking, and which is
split in the two subcomponents Neutron controller (VIM
core component) and Neutron agent (VIM local component).
Figure 4b shows the main phases of the scheduling and
instantiation process for OpenStack Nova, the main differ-
ences are summarized hereafter.

Once Nova API receives back the image URI and its
metadata from Glance, and the host id from Nova Sched-
uler; next step is the interaction with Cinder for the retrieval
of the block storage. First difference we can appreciate is
a more advanced scheduling function: it selects the hosts
via filtering and weighting instead of using simple round
robin schemes. In parallel, Nova API requests Neutron (VIM
core component) to configure the network for the instance. At
this point the workflow is managed by the OpenStack VIM
local components: Neutron server validates the request and
then instructs the local Agent to create and properly set-
up the network for the VM. As soon as the Agent finishes
the creation Nova APIs gets the relevant information and
contacts Nova computes for the spawn of the VM. Finally,
the workflow follows the same step as of OpenStack Legacy.



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

(a) VIM instantiation model for OpenStack Legacy (b) VIM instantiation model for OpenStack (with Neutron)

Fig. 4: VIM instantiation models for OpenStack

4.3 Modelling Nomad

The scheduling and instantiation process for Nomad is
shown in Figure 5. According to our model (cf. Figure 3),
the Nomad Server is mapped to the VIM core components.
It receives the requests for the instantiation of VMs (jobs)
through the REST API. Once the job has been accepted
and validated, the Server takes the scheduling decision and
selects which Nomad Client node to run the VM on. The
Server contacts the Client sending an array of job IDs. As
response the Client provides a subset of IDs which are the
ones that will be executed in this transaction. The Server
acknowledges the IDs and the Client executes these jobs.
The Nomad Client is mapped to the VIM local components
and interacts with Compute resources/hypervisors. In Xen,
this interaction is done via a user-level toolstack, of which
Nomad supports several. We used xl (see section 5), the
default Xen toolstack, to interface with the local Xen hy-
pervisor. xl provides a command line interface for guest
creation and management. The Client executes these jobs
loading the Nomad Xen driver, which takes care of the job
execution interacting with the xl toolstack. The instantiation
process takes place and, once completed, the Client notifies
the Server about its conclusion. Meanwhile the boot process
of the VM starts and continues asynchronously with respect
to the Nomad Client.

4.4 Modelling OpenVIM

Borrowing the terminology we have defined in Figure 3,
OpenVIM Core and OpenVIM DB compose the VIM core
components. The submission of tasks (i.e., commands and
associated descriptors) can be performed through the Open-
VIM Client. The requests from the client are forwarded to
the core via REST API. Each task request is then mapped to
a specific image flavor and image meta-data. These, together
with the status of the Compute nodes (retrieved from the
OpenVIM DB) are given as input to the scheduling process,
which decides the Compute nodes that will handle these
requests. The taken decision is written to the database and

the OpenVIM Client is notified returning a HTTP 200 OK
message. At this point the task is split into a network re-
quest and an instantiation request. If the networking part is
managed through a compatible SDN controller, the network
request is forwarded to a network thread which takes care of
interacting with SDN controller of the infrastructure in order
to perform all the networking related tasks. Otherwise, the
network request is directly forwarded to libvirt. Instead, the
instantiation is performed partially on the controller node
and partially on the local node: OpenVIM Core is a multi-
thread application where each Compute node is associated
with a thread and a work-queue. According to the schedul-
ing decision, the jobs are submitted to the proper work
queue and subsequently the spawning process can start. The
thread starts this phase by generating the XML description
of the instance and submitting it to the OpenVIM Local’s
libvirt daemon running on the chosen compute node. The
requests, data and what is needed for the spawning is
forwarded to the destination leveraging SSH connections.
If needed, 3rd party software can be invoked for further
configurations (e.g., Open vSwitch). At this point the job
is completely offloaded to the Compute resources compo-
nent. The libvirt daemon creates the instance based on the
received XML. After this step, the associated thread on the
OpenVIM Core calls the libvirt daemon again to instruct it
to start the previously-created instance. Finally, the libvirt
daemon boots the instance through the Xen hypervisor and
the information on the started instance is updated in the
OpenVIM Database. The OpenVIM Client can obtain up to
date information during the VM lifetime by polling its sta-
tus. Figure 6 shows the instantiation process in OpenVIM.
For sake of clarity, networking details have been omitted.

5 VIM MODIFICATIONS TO BOOT MICRO-VNFS

We designed and implemented some modifications in the
considered VIMs to enable the instantiation of Micro-VNFs
based on ClickOS using OpenStack, Nomad and Open-
VIM. VIMs offers support for various type of virtualization:
paravirtualization (PV), Hardware Virtualization (HVM)



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

Fig. 5: VIM instantiation model for Nomad

and container-based virtualization. Unikernels can both run
fully virtualized or paravirtualized using different hyper-
visors (e.g., KVM [24], XEN [23]). However, this does not
imply that all VIMs support Unikernel based VNFs. The
main reasons for these adaptations lie in the peculiarities of
the ClickOS VMs compared to regular VMs.

A regular VM can boot its OS from an image or a disk
snapshot that can be read from an associated block device
(disk). The host hypervisor instructs the VM to run the boot
loader that reads the kernel image from the block device. A
small variation of this process boots the VM with a special
bootloader (provided by the hypervisor). The latter starts
the boot cycle and then loads the kernel specified in the VM
bootloader config file (e.g., menu.lst) on the VM image. On
the other hand, we are interested in ClickOS based Micro-
VNFs, provided as a tiny self-contained kernel, without
a block device (boot executing directly the kernel). These
VMs need to boot from a so-called diskless image. Note
that Unikernel VMs, depending on the function that they
perform, can also use a block device for storage purpose but
this device is not needed to boot the VM. When instantiating
such VMs, the host hypervisor reads the kernel image from
a file or a repository and directly injects it in the VM
memory, meaning that the modifications inside the VIM
can be relatively small and affecting only the component
interacting with the virtualization platform to boot diskless
images. We define as stock the VIM versions that only include
the modifications required to boot the ClickOS VMs. We an-
alyzed the time spent by the stock VIMs during the different
phases of the driver operations. Then, taking into account
the results, we proceeded with an optimization trying to
remove those functions/operations not directly needed to
instantiate Micro-VNFs. We define as tuned these optimized
versions of the orchestrators.

From the point of view of the development effort, it
has been possible to realize the VIMs modifications and
maintain them updated through the further releases with
an overall effort in the order of 3.5 Person Months (PM).
We roughly spent 1.5 PM for OpenStack, 1.5 PM for Open-
VIM (including the effort to get the changes merged in
the upstream repository of the OSM project [17]) and 0.5
PM for Nomad. The amount of work to implement the
modifications for each VIM is heavily dependent on the

specific project: for example for Nomad and OpenVIM it
was relatively easy to introduce the support for booting
from diskless images thanks to their simple architectures
and to the flexibility of their southbound framework. In
contrast, it was more difficult to understand how to modify
OpenStack, due to its larger codebase, supporting several
types of hypervisors, each through more than one toolstack.
In our previous work [15], we implemented a “hack” to
instantiate ClickOS images, while in this work we have de-
vised an alternative solution, cleaner and easier to integrate
in the main OpenStack development line. Our patches to
OpenStack, Nomad and OpenVIM are available at [16] and
in the OSM repository. The following subsections elaborate
on the realized solutions and provide some implementation
details.

5.1 OpenStack Legacy – The “hacky” solution
In our previous work [15], for OpenStack Legacy we en-
abled the boot of diskless images targeting only one com-
ponent (Nova Compute) and a specific toolstack (libvirt).
We selected this toolstack because it supports libxl, which
is the default Xen toolstack API. We first implemented the
minimal set of changes to the libvirt driver as needed to
instantiate the ClickOS VMs. In particular, we modified
the XML description of the guest domain provided by
the driver: by default libvirt can support different domain
types, i.e., virtualization technologies. ClickOS requires the
paravirtualization technology provided by the Xen hyper-
visor. The proposed approach involved changing the XML
description on the fly, before the actual creation of the
domain. The change, required to enable the boot through
libvirt, consists in using paravirtualization and providing
the ClickOS image as the kernel. After this change we need
a way to trigger our code. We did not patch the OpenStack
image store (Glance) because a mainstream patch was out
of the scope of our previous work. We resorted to a simple
hack to trigger the execution of our code, adding a new
image to the store with a specific image name. When this
specific name was selected for instantiation, our patches
to the Nova compute libvirt driver were executed and the
ClickOS image was loaded directly from the disk (not from
Glance). Moreover we limited the interaction with Cinder
since the targeted Unikernel does not need a disk to boot
up. Note that the above modification significantly changed
the workflow: in OpenStack it is possible to instantiate
VMs with a 0-byte disk, but even in this case, a volume
is mandatory. In fact, when the VM is created, it needs to be
associated with an ephemeral root disk that will contain the
bootloader and core operating system files. In the deploy-
ment of OpenStack with Neutron we have introduced back
this step as explained in following Section (5.2).

5.2 OpenStack – Borrowing the AKI approach
Concerning OpenStack with Neutron networking, we have
implemented an improved modification starting from the
work described in the previous subsection. We have reused
part of the modifications done to the libvirt driver in the
tuned version of OpenStack. Instead for the stock version, we
have improved the patch introducing directly the support
for ClickOS images. We have extended the OpenStack image



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

Fig. 6: VIM instantiation model for OpenVIM

store (Glance) leveraging the OpenStack support for Amazon
(AWS) EC2 images. Indeed, Amazon EC2 supports paravir-
tualization, and an Amazon image is typically composed by
three different objects: i) AMI, the Xen DomU guest oper-
ating system; ii) ARI, the Xen paravirtualized ramdisk; iii)
AKI, the Xen paravirtualized kernel. Going into details, an
AKI is a pre-configured bootable mini kernel image which
is pre-built and provided by Amazon to boot instances. It
contains a specialized bootloader for the Xen environment
required to boot an instance from an AMI. In particular, the
AKIs are shipped with the PV-GRUB bootloader which is
derived from MiniOS [25]. Then, we created a new kernel
image called UKI (Unikernel Image) and we used ClickOS
in the image instead of PV-GRUB. We added new Amazon
EC2 images in Glance containing ClickOS as AKI and then
we excluded the AMI and ARI. In this way, we are able to
load the images directly from the store without employing
any hack. Moreover, the patch is likely to be accepted by
OpenStack community since it results more compliant to
the typical workflow.

5.3 Nomad Modifications

In our previous work, we leveraged the Nomad’s support
for different types of workload through the driver frame-
work. In particular the following virtual resource types
have built-in support: Docker, Java VMs, QEMU/KVM and
RKT engine. Starting from the QEMU/KVM support, we
developed a new Nomad driver for Xen, called XenDriver.
The new driver communicates with the XL toolstack and
it is also able to instantiate a ClickOS VM. By extending
the driver framework and changing the job type in the
description we added support in Nomad for Xen type jobs
without the need to modify the Server: this component is
not aware of the details and verifies only the availability
of resources against the candidate Clients (Compute hosts
supporting the Xen type jobs). The drivers are loaded at boot
time and the supported drivers are communicated to the
Servers in the context of the Client’s registration. Therefore,
using the standard Nomad CLI or a HTTP client we can
create Xen jobs and submit them to the Server.

5.4 OpenVIM Modifications

For what concerns OpenVIM, we were able to add support
for Unikernels with a relatively small change: OpenVIM

by default uses libvirt as toolstack with KVM/QEMU as
hypervisor. First, we have extended the libvirt back-end by
adding support for the proper libvirt (XML) descriptors.
The modification is very similar to the one described in
Section 5.1. Moreover, we changed the descriptors to use
Xen as hypervisor.

Then the second step of the modification consisted in
making aware the OpenVIM core of this new type of VMs.
This modification has been designed to guarantee backward
compatibility with the original OpenVIM supported VM
types. We have extended the descriptor formats of the
VMs and of the Compute Nodes. For the former, we have
introduced a hypervisor attribute indicating the technology:
kvm, xen-unik and xenhvm are possible values and reflect
respectively the original mode, Unikernel mode and full VM
mode for Xen. OSImageType is the second attribute added for
the VMs indicating the type of image to be used. Its presence
is mandatory when xen-unik is selected as hypervisor1.
Regarding the Compute node descriptors, we have added a
new attribute describing the type of supported hypervisors.
Finally, we have changed the scheduling to take into account
the newly introduced attributes: the Compute nodes are
now selected based not only on the available resources but
also considering the type of supported hypervisors. With
these modifications in place we are able to generate the
proper libvirt (XML) configuration for ClickOS and instanti-
ate and start Unikernels in OpenVIM.

All the changes mentioned above have been recently
accepted by the project maintainers and are available from
the release THREE of OpenVIM.

5.5 Applicability of the modifications

In this work we have focused on just one Unikernel, namely
ClickOS. All the extensions we have realized are applicable
to all the Unikernels derived from MiniOS, such as ClickOS
and the recent Unikraft/Unicore family. As regards other
Unikernels, the proposed modifications would be easily ap-
plicable if: i) the Unikernel support Xen Para-Virtualization;
ii) the Unikernel can be booted executing directly the kernel;
iii) the Unikernel can run with an ephemeral root block de-
vice. For example let us consider two other Unikernels: OSv
[26] and Rumprun [27]. The former could be booted leverag-
ing the stock version of OpenStack and OpenVIM and using
the extended version of Nomad; but fast-instantiation and
tuning cannot be achieved because it does not support para-
virtualization, it cannot be instantiated executing directly
the kernel and it needs a block device. On the contrary, for
the Rumprun Unikernels we can apply in principle all the
modifications we have realized since it does not require a
disk and supports only the Xen para-virtualization.

6 EXPERIMENTAL RESULTS AND TUNING

In order to evaluate the VIM performances during the VM
scheduling and instantiation phases, we combine different
sources of information. As a first step, we analyze the mes-
sage exchanges between the VIM components in order to
obtain coarse information about the beginning and the end

1. Currently only the clickos value is supported but the OSImageType
attribute allows for the future support of different types of Unikernels.



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

of the different phases of the VM instantiation process. The
analysis of messages is a convenient approach as it does not
require modification of the source code. To this aim, we have
developed a VIM Message Analyzer tool in Python using the
Scapy [28] library. The analyzer (available at [16]) is capable
of analyzing OpenStack and Nomad message exchanges.
Regarding OpenVIM, a separate discussion is needed: we do
not use the aforementioned approach because of the high in-
stability of the performance (detailed later in Section 6.3) we
faced during preliminary tests and because in the software
architecture there is no strong partition in sub-components
running on separate machines: basically OpenVIM is a
monolithic multi-thread VIM which interacts directly with
libvirt running on the compute node. Thus, it has been
necessary an accurate breakdown of the different phases
and of their timings. For this we have relied on timestamps
also on the logs provided by Xen. More details are provided
in Subsection 6.3. For a detailed breakdown of the spawning
phase, we have inserted timestamp logging instructions into
the code of the Nomad Client and Nova Compute nodes.
We generate the workload for OpenStack using Rally [29], a
well known benchmarking tool. For the generation of the the
Nomad workload, instead, we have developed the Nomad
Pusher tool. It is an utility written in the GO language, which
can be employed to programmatically submit jobs to the
Nomad Server. For what concerns OpenVIM, we leverage
the OpenVIM Client CLI for the submission of the jobs to the
system. We have executed several experiments to evaluate
the performance of the considered VIMs. The complete data
set of our experiments is available at [30].

Two main results are hereafter presented: i) the total
time needed to instantiate a ClickOS VM (as an example of
a Micro-VNF); ii) the timing breakdown of the spawning
process in OpenVIM, OpenStack and Nomad. Since the
results of the tuned OpenVIM were very promising we have
better examined the performance analysis for this VIM.
Compared to our previous work, we have introduced per-
formance evaluation for the OpenStack and OpenVIM vir-
tual infrastructure managers and omitted the results related
to OpenStack Legacy: performance evaluation of OpenStack
with Neutron is of higher relevance since this represents the
long-term supported configuration. Moreover, for the sake
of clarity we prefer to maintain a three-way comparison.
Major details about the OpenStack Legacy evaluation can
be found in [15].

The first results that we report are based on the VIM
Message Analyzer that we have developed [16] (except for
OpenVIM, as described above) and presented in Figure 7.
The timing breakdown of the spawning process has been
obtained with the approach of inserting timestamp loggers
into the source code of the VIMs under evaluation. All
results were obtained by executing a test of 100 replicated
runs, in unloaded conditions. Error bars in the figures de-
note the 95% confidence intervals of the results. In each run
we requested the instantiation of a new ClickOS Micro-VNF.
The VM was deleted before the start of the next run. As
regards OpenVIM, we analyze its performance also under
loaded conditions and submitting batches of requests.

Our experimental setup comprises two hosts with an
Intel Xeon 3.40GHz quad-core CPU and 16GB of RAM. One
host (hereafter referred to as HostC) is used for the VIM

core components, and the other host (HostL) for the VIM
local components and the compute resource. We use Debian
8.3 with Xen-enabled v3.16.7 Linux kernels. Both hosts are
equipped with two Intel X540 NICs at 10 Gb/s where: one
interface has been used as the management interface and
the other one for the direct interconnection of the host (data
plane network). In order to emulate a third host running
OpenStack Rally, Nomad Pusher and OpenVIM Client CLI,
we created a separate network namespace using the iproute2
suite in HostC, then we interconnected this namespace to
the data plane network. This approach is useful also for
the VIM Message Analyzer because it offers a practical way
to better understand the exchange of messages during the
different phases (since they come from different sources).

6.1 OpenStack Experimental Results

For the OpenStack setup, we run Keystone, Glance, Nova
orchestrator, Horizon, Neutron server and the other compo-
nents in HostC, while we run Nova Compute and Neutron
Agents in HostL. We use the development version of Open-
Stack (DevStack [19]) for our deployment, which is more
suitable for our experimental testbed, since it quickly brings
up a complete OpenStack environment based on specific
releases or on modified versions and it allows to incremen-
tally bring up and down OpenStack services when needed.
We have adapted it to run on the two available servers
because typically it envisages a single machine deployment.
We use the modifications presented in Section 5.2 and the
libvirt/libxl support in OpenStack in order to boot ClickOS
Xen machines.

With reference to the instantiation model depicted in
Figure 4b, we report in Figure 7a the measurements of the
instantiation process in OpenStack, separated by compo-
nent. The upper horizontal bar (Stock) refers to the Open-
Stack version that only includes the modifications needed
to boot the ClickOS VMs (as described in Section 5.2). Note
that in the tested deployment we assume that the Block
Storage service (Cinder) has already created all the needed
block devices. This implies that the block device creation
time will not be considered in our test, while we count its
retrieval time. The experiment reports a total time exceeding
two seconds for the stock version, which is not adequate for
highly dynamic NFV scenarios. Analyzing the timing of the
execution of the single components, we note that almost one
second is spent during the spawning phase while the sum
of other components accounts for around 1.1 seconds.

In Figure 7b (upper horizontal bar), we show the details
of the spawning phase which is split into three sub-phases:
1) Create image, 2) Generate XML and 3) Libvirt spawn. The
first two sub-phases are executed by the Nova libvirt driver,
and the last one is executed by the underlying libvirt layer.
By analyzing the timing of the stock version, we can see that
the Create image is the slowest step with a duration of about
0.5 seconds. During the Create image phase, the Nova libvirt
driver waits for Cinder to retrieve of the block device and for
Neutron to create/retrieve the network ports and connec-
tions. The image creation step includes operations such as
the creation of log files and of the folders to store Glance im-
ages. The original OS image (the one retrieved from Glance)
is re-sized in order to meet user requirements (the so called



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

(a) Instantiation time breakdown on OpenStack (b) Spawning time breakdown on Nova-compute

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Time [s]

Tuned

Stock

Nomad Server
Nomad Client

(c) Instantiation time breakdown on Nomad

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Time [s]

Tuned

Stock

Download Artifact
Init Environment
XL Spawn
Clean

(d) Spawning time breakdown on Nomad

Fig. 7: ClickOS instantiation and spawn time breakdown on OpenStack and Nomad

flavors in OpenStack’s jargon). Moreover, if it is required,
swap memory or ephemeral storage are created, and finally,
some configuration parameters are injected into the image
(e.g., SSH key-pair, network interface configuration). The
Generate XML and Libvirt spawn steps introduce a total delay
of about 0.4 seconds. During the Generate XML step, the
configuration options of the guest domain are retrieved and
then used to build the guest domain description (the XML
file given as input to libvirt). For instance, options such as
the number of CPUs and CPU pinning are inserted in the
XML file. Once this step is over, the libxl API is invoked
in order to boot the VM. When the API returns, the VM is
considered spawned, terminating the instantiation process.
In this test, we are not considering the whole boot time of
the VM, as this is independent of the VIM operations, and
thus out of the scope of this work. The considered spawning
time measures only the time needed to create the Xen guest
domain.

The performance measurements for OpenStack reported
above show that most of the instantiation time is spent
during the spawning phase and in particular on the Create
image operation. In this work and also in the previous one,
we did not target the optimization of other components:
OpenStack being a general purposes VIM, tailoring and
optimizing it for a single scope (e.g., managing only the VNF
lifecycle) would completely distort its purpose. Moreover,
some components are already optimized, for example it
was not possible to implement meaningful optimizations on
Neutron, as it is already tuned and makes extensively use
of caching. Caches are also employed in other operations:
image download, block device creation/reuse, network cre-
ation. However, it is still possible to tune the spawning
phase without losing the general scope of OpenStack.

The tuned horizontal bar in Figure 7a and Figure 7b
report the obtained result. The optimizations did not alter
too much the workflow shown in Figure 4b as they only
exclude Cinder from the process and they make smaller the
Spawning in the Nova libvirt driver. The reduction of the
instantiation time highlights that shorter boot times are not
the only advantage of Unikernels compared to full fledged

OSs: specific VIM optimizations can be performed due to
their characteristics. We are using a tiny diskless VM, which
means we can skip most of the actions performed during
the image creation step. For example, we do not need to
resize the image in order to match the flavor disk size.
Moreover, Unikernels provide only the functionality needed
to implement a specific VNF, so it is unlikely to have an
SSH server running on it, hence SSH key-pairs configuration
is not needed. The tuned version does not include the
operations related to block device mapping, due to ClickOS
machines being diskless. After this optimization, the Create
image phase has been “shortened”. However, it still has an
impact of 50ms in the tuned boot. The removal of the block
device operations also has an effect on the spawning phase,
removing the need to wait for block device information. The
Generate XML phase is also affected, as fewer operations
have to be performed. Implementing these optimizations,
we are able to reduce the spawning time down to 0.32 s
(Figure 7b, bottom bar) obtaining a reduction of about 65%
compared to the stock version of OpenStack. Looking at the
overall instantiation time, the relative reduction (Figure 7a,
bottom bar) is about 30%, down to 1.5 s from 2.1 s for the
stock OpenStack.

6.2 Nomad Experimental Results
According to the Nomad architecture, the minimal deploy-
ment comprises two nodes. Therefore, we have deployed
a Nomad Server, which performs the scheduling tasks, on
HostC and a Nomad Client, which is responsible for the
instantiation of virtual machines, on HostL.

In Section 4, we have identified two major steps in
the breakdown of the instantiation process: scheduling and
instantiation. The upper horizontal bar in Figure 7c reports
the results of the performance evaluation for the stock No-
mad. The total instantiation time is much lower than 1
sec. This result is not surprising: as discussed in Section 2,
Nomad is a minimalistic VIM providing only what is strictly
needed to schedule the execution of virtual resources and
to instantiate them. Looking at the details, the scheduling
process is very light-weight, with a total run time of about



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

50 ms. The biggest component in the instantiation time is
the spawning process which is executed by the XenDriver.
Diving into the driver operations, we identified 4 major
steps: Download artifact, Init Environment, Spawn, and Clean,
as reported in in Figure 7d. In the first step, Nomad tries
to download the artifacts specified by the job. For a Xen
job, the client is required to download the configuration file
describing the guest and the image to load. This operation
adds a delay of about 40 ms and can be optimized or
entirely skipped. Init Environment and Clean introduce a
low delay (around 20 ms) and are interrelated: the former
initializes data structures, creates log files and folders for the
Command executor, the latter cleans up the data structures
once the command execution is finished. The XL spawn is
the step which takes longer but by studying the source
code we found no room to implement further optimizations:
indeed the total spawning measured time is around 100 ms.
Considering a light overhead introduced by the Command
executor the time is very similar to the what we obtain by
running directly the xl toolstack. The overall duration of the
spawning phase is 160 ms, lower that the 280 ms for the
instantiation phase reported in Figure 7c. This is due to the
notification mechanism from the client towards the server.
It uses a lazy approach for communicating the end of the
scheduled jobs: when the message is ready to be sent, the
client waits for a timer expiration to attempt to aggregate
more notifications in a single message. This means that the
instantiation time with Nomad is actually shorter than the
one shown in Figure 7c.

Thus, we have observed that the instantiation times are
already smaller, in the order of 0.3 s (or 0.2 s if we do
not consider the notification delay from Nomad Client to
Nomad server). This can be explained by the following: i)
the scheduler in the Nomad Server is very lightweight and
its functionality is much simpler; ii) in the client we have
implemented from scratch a new Nomad driver for Xen
(cf. Section 5) and hence included only code in the driver
which is strictly necessary to interact with XL. Starting from
our initial implementation, we introduced further improve-
ments streamlining the execution of the Nomad Client (the
Download Artifact step of the XenDriver) assuming that the
images of the Micro-VNFs can be stored locally. Pursuing
this approach we can reduce the Driver operation by about
30 ms (see Figure 7d).

6.3 OpenVIM Experimental Results

We deploy OpenVIM Core components and OpenVIM DB
on HostC, while HostL has been employed as compute
node. We use the development mode for OpenVIM in our
experiments, which requires less resources and disables
some functionalities, like EPA features, passthrough and
many others. We make use of the modifications presented
in Section 5.4 in order to boot ClickOS Xen machines. We
have also configured HostC as compute node noticing no
performance degradation of the system.

The upper horizontal bar in Figure 8 shows the measure-
ments related to the instantiation process for OpenVIM stock
divided in REST, Scheduling, Spawning and libvirt phases.
With reference to the model depicted in Figure 6, REST,
Scheduling and part of the Spawning are mapped to the

Fig. 8: ClickOS instantiation time on OpenVIM

OpenVIM Core and MySQL components. The second part of
the Spawning and the libvirt phases are spent on the compute
node and they are mapped respectively with OpenVIM Local
and libvirt components. Summing up all the parts we have
obtained a total instantiation time of about 1 s.

Our analysis of this behavior is reported later in this
section. We have started the optimization process by exclud-
ing from the instantiation phase all the operations which
are not required for the ClickOS boot but performed in
any case by OpenVIM. With reference to the instantiation
workflow shown in Figure 6, our tuning mainly affects the
duration of the Spawning phase in the OpenVIM Core and
OpenVIM Local components. During the Spawning process,
the VM interface is reset sending ifdown/ifup via SSH. This
operation is totally irrelevant for ClickOS and it can be very
time consuming since the Spawning is blocked waiting for
the interfaces coming down/up. Another operation we have
optimized, it is the full-copy of the VM image: by default a
copy is performed, inside the compute node, moving the
VM image from the OpenVIM folder in the libvirt folder.
We have removed this overhead, maintaining a local copy
of the image in the libvirt folder and thus saving a cp
command each time. libvirt is a source of overhead itself:
by default operates using SSH as transport layer. Even if all
its operations are small, SSH can introduce a certain amount
of overhead. Thus, as further optimization, we have enabled
TCP as transport layer for the libvirt communication channel
instead of SSH. Finally, we have optimized the generation of
the XML (like we have done for OpenStack) because for the
stock version we have used the default behavior of libvirt
with Xen. We have removed all unnecessary configuration
parts like the graphics, serial ports and we have avoided
also the allocation of the CD-ROM virtual device and of the
hard disk. Then, we have focused our attention on the Open-
VIM Core components. In particular, the management of
work queues has attracted our attention: for each compute
node there is a worker thread which manages a working
queue where the instantiation requests are enqueued as
output of the scheduling. By default, the worker checks the
queue each second. In a deployment with a few numbers of
compute nodes, this obviously is too conservative. Setting
this refresh time to zero has led to a considerable reduction
of the instantiation process, but at the same time has in-
creased the load on the CPU. With our deployment we have
found a good compromise setting up the polling interval at
1 ms (in this configuration, we have measured a load of 2%
in the HostC where OpenVIM Core and OpenVIM DB run).
Results of our optimizations are shown in bottom row of
the Figure 8. With the above modifications we are able to
measure times of around 400 msec. Looking at the overall



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

(a) OpenVIM stock (b) OpenVIM tuned
Fig. 9: Instability analysis of OpenVIM

instantiation time, the relative reduction is about 65%. The
Spawning phase becomes negligible and stable (it is possible
appreciate an high variance in the stock version), while the
other phases are mostly unchanged. As regards libvirt this
is expected, while the results of the Scheduling phase were
quite suspect.

Looking at Figure 9b, coefficient of variation is around
40% for the Scheduling phase, which is high if compared
to the other VIMs (also in OpenStack with an improved
scheduling we did not appreciate this high variance). We
have dug into the results of the single runs and we have
noticed strange behavior. Figure 9a reports this analysis
showing the results of the first 30 runs of the stock version,
while Figure 9b shows the same for the tuned version of
OpenVIM. It is possible to note that in the tuned version the
variance related to Spawning phase completely disappeared
after our optimizations. While, it is obvious that there is high
irregularity in the runtime of the Scheduling part. We have
analyzed the internals of this part and we have noticed that
is composed by a decisional component and by the storing
of the decision in the database. In order to analyze it further,
we have inserted additional timestamps to split the decision
of the scheduler from the storing of the decision into the
MySQL database. The separation of the times has shown
a decision phase with an average of 2.21 ms, while the
operation of storing into the database has presented strange
results with a bistable behavior. At this point we have
repeated the same tests enabling the profiling of the code
in OpenVIM. We have identified that the high variability
of execution time was related to the commit function of
the msql.connection object. In order to solve the problems
we were facing, first we have tried different configuration
for MySQL with no success. We made the hypothesis that
we had problems with the hard disk and recreated a small
testbed using two Intel NUC personal computers equipped
with Intel Core I5 processors, 16GB of RAM and 1 Gb/s
Ethernet. We repeated the experiments and the instability
problems related to the OpenVIM DB disappeared, this
confirmed our hypothesis that the problem was in the hard
drive of our machines. Leveraging the fact the deployment
of OpenVIM is not resource-hungry with regards to disk
space, we have changed the setup of OpenVIM deploying
all the components on ramdisk. Figure 10a shows the results
of this operation. In Figure 10b we have reported also a
more detailed breakdown. The resulting times are very low
and demonstrate that we have circumvented the problems
related to the database. With the setup described above, we
measure times around 0.15 seconds. Looking at the overall

instantiation time, the relative reduction is about 57% with
respect to the results of the first tuned version and 85% with
respect to the stock version of OpenVIM.

It can be noted from the results that it was not possible
to reduce the component brought by libvirt. This time is
mainly composed of: i) the system calls done to spawn the
Unikernel; ii) the setup of the network; iii) the interaction
with the xenstore. In particular for what concern the setup
of the network, we measure a time of 31 msec if we use
Open vSwitch as bridge and 14 msec if we use Linux Bridge.
We obtain these times emulating the network configuration:
libvirt, during this phase, gives the control to Xen, which
uses the scripts in the folder /etc/xen/scripts to setup the
network, starting from these we have emulated Unikernel
instantiations and we have measured the network overhead.
In the light of this, the entire remaining part is spent by
the libvirt system calls and by the xenstore. The former and
the networking part, although it consists only on connecting
the VM with its bridge, are still required. While, the second
part can be further optimized as shown in [4] where authors
propose a redesigned toolstack for Xen without the xenstore
component.

Since the results are very promising, we have extended
our performance evaluation of OpenVIM with two addi-
tional benchmarks. In the first one we have tested OpenVIM
with different load conditions and we have recorded the
total instantiation times. Table 1 reports the results of this
experiment. To generate different loads, we instantiate a
number N of VMs as background, then we execute a number
of runs where we recorded the time to instantiate the N+1
VM. In the table, the first column (namely Load) reports ex-
actly the number of VMs already spawned, while we show
the times generated by the instantiation of an additional
VM in the other columns. In order to spawn a high number
of VMs we have pinned one core to Dom0 (two CPUs),
scheduling the VMs on the remaining cores. Otherwise,
the risk is to have CPU stuck during the experiments. The
results show a monotone increase with the number of VMs.
It is possible to appreciate that Spawning stays stable with
almost negligible increases, REST and Scheduling show a
very slow tendency to increase. Instead, libvirt time results
to be influenced by the number VMs, with times that start
around 0.15 seconds when the system is unload to arrive
to 0.4 seconds with 300 VMs running in background. This
matches [4], where the authors provided a deep study of the
instantiation overhead, and pointed out that Xen’s xenstore
leads to a super-linear increase of instantiation times as the
number of VMs on a system increases.



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

(a) Instantiation time breakdown on OpenVIM tuned (b) Spawning time breakdown on OpenVIM tuned

Fig. 10: ClickOS instantiation and spawn time breakdown on OpenVIM

In the last experiment, we have submitted batch requests
with the objective of simulating a VNFs chain instantiation.
Each batch contains the instantiation request of a number
VMs M which varies between 5 and 10. OpenVIM perfor-
mance has been evaluated considering different initial states
for the system (0, 10, 50, 100, 200 VMs already running). We
did not include results for 300 VMs since we were not able to
finish the experiments without errors. Using this hardware
we were able to spawn a number of VMs slightly higher
than 300, this had been verified using only xl toolstack.

Instantiation time breakdown (s)
Load REST Scheduling Spawning libvirt

10 VM 0.004 0.004 0.185± 0.043 0.157± 0.004
20 VM 0.007 0.004 0.216± 0.035 0.161± 0.003
50 VM 0.007 0.004 0.192± 0.021 0.181± 0.005
100 VM 0.007 0.004 0.205± 0.016 0.216± 0.008
150 VM 0.007 0.004 0.207± 0.013 0.254± 0.011
200 VM 0.007 0.005 0.206± 0.011 0.297± 0.012
250 VM 0.007 0.005 0.195± 0.012 0.346± 0.015
300 VM 0.008 0.006 0.195± 0.011 0.401± 0.018

TABLE 1: OpenVIM under load conditions
Table 2 reports the results of this experiment. Values

are obtained averaging the instantiation time of the VMs
booted during the run, in each run a batch of size M is
submitted. The results are higher than the previous tests,
but this is expected since we are submitting several jobs at
this same time, which introduces overhead with respect to
the instantiation of a single VNF. In our configuration we
pinned one core to Dom0, thus spawning more VMs at the
same time will result in more contention of the two CPUs
we provided to Dom0. Analyzing the results, it is possible
appreciate that these higher values are mainly due to lib-
virt while other components are stable. Moreover, passing
from unloaded conditions to 10 VMs already instantiated
introduces an overhead about 100 msec in the database
reads, which remains constant in the tests with 50 VMs, 100
VMs and 200 VMs. Instead, changing the size of the batch
in the considered values does not introduce a considerable
overhead.

Instantiation time (s)
Load 5 VM 6VM 7VM 8 VM 9 VM 10 VM
0 VM 0.319 0.337 0.342 0.371 0.374 0.391
10 VM 0.447 0.467 0.461 0.455 0.454 0.463
50 VM 0.535 0.539 0.526 0.545 0.551 0.543
100 VM 0.622 0.594 0.624 0.616 0.622 0.632
200 VM 0.814 0.829 0.841 0.862 0.851 0.863

TABLE 2: OpenVIM under different load conditions and
batch submissions

6.4 Gap Analysis and Discussion of the Results
Considering the results of the performance evaluation we
believe that a step towards the support of highly dynamic
scenarios has been done but there is still an important
performance gap to be filled in the orchestrators to fully
support the Superfluid NFV scenarios. The tuned version
of OpenStack shows an improvement of about 30% but
the absolute value of the instantiation times is still around
1.5 seconds which is too high for the considered scenarios.
This would result in an additional delay for the first packet
coming from the user when a Unikernel is spawned at
the time of arriving of the packet. As regards Nomad, the
instantiation times are small at least when the system is
unloaded, however Nomad is a very minimalistic orches-
trator and lacks of useful functionality (like the support
for advanced networking features) that we can found in
OpenStack and OpenVIM. As regards OpenVIM, it showed
good instantiation times (around 0.15 seconds) and a good
base of functionality. However, the experiments executed
under loaded conditions exhibited unsatisfactory perfor-
mance with a super-linear increase of instantiation times as
the system become loaded.

We learned some lessons from this work, which could be
applied to the design of new VIMs or to the refactoring of
existing VIMs. Modularity is an important characteristic to
turn the VIMs into composable projects and adapt them to
new requirement. Initially, we felt lost and unable to do also
small modifications without resorting to hacks. VIMs should
not force the users to a predefined workflow but it should
be possible to exclude some steps without explicitly killing
the components of the VIMs. We advocate that new VIMs
or existing VIMs should be more modular to accommodate
new features more easily, like the support for other hyper-
visors or new tools (for example in [4], the authors propose
an optimized toolstack for Xen). Another consideration is
that Unikernels introduce an important shift from general
purpose VMs to specialized VMs: full VMs can be easily
configured after they are deployed, while for Unikernels
like ClickOS most reconfigurations need to happen in the
image creation phase, before that the Unikernel is deployed.
VIMs have to take into account this and the toolchain of
the Unikernels should be integrated in the workflow of the
VIMs, easing the deployment of customized Unikernels.

7 RELATED WORK

VIM performance evaluation is a topic addressed also by
other works. In [31], [32], [33] authors compare the per-
formance of OpenStack versus other projects (CloudStack,



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

OpenNebula, Eucaliptus). However, the performance fig-
ures of VIMs are analyzed in terms of time needed to
instantiate fully fledged VMs and they are mainly focused
on mere benchmarking without a deep analysis of the tasks
performed during the instantiation. On the other hand,
in [34], [35], authors consider only OpenStack and focus on
particular aspects such as networking components rather
than the scheduling. Other works (such as [11], [12], [14])
focus on the performance of ClickOS and of the NFVI.
They demonstrate that it is possible to guarantee low la-
tency instantiation times for Micro-VNFs and the suitability
of ClickOS for the NFV and Superfluid Cloud use cases.
Instead, our work is focused on the analysis of the perfor-
mance of VIMs and of their suitability in the NFV frame-
works (including also the Superfluid NFV framework).

In [36] the authors consider performance tuning of
OpenStack-based virtual infrastructures, targeting the high
performance computing scenario. Instead, our work is
aimed at the NFV scenario and considers a broader set of
virtual infrastructure technologies. Enos, described in [37],
is an open source toolset to automatize the deployment and
conduct experiments on OpenStack. The tools that we use
in our work are released as open source as well, but aim at
a plurality of VIMs.

[38], [39] describe solutions covering the whole NFV
framework and for the implementation of ETSI MANO
specifications. Among these, solutions such as CloudBand,
CloudNFV and OpenNFV are proprietary and there are not
enough details available to include them in our analysis,
while OPNFV defines a general framework for NFV, and,
as for the VIM component, it employs OpenStack. However
these works do not address the performance of the practical
implementations of the NFV framework. TeNOR is another
open source project which implements the NFV MANO
framework. In [40], the authors report a performance eval-
uation which addresses only TeNOR at a high level, while
our work aims at a broader and deeper scope.

This work significantly extends the preliminary results
described in [15]: i) the analysis and the modelling of the
instantiation process consider also OpenVIM from the OSM
project [17] and OpenStack with Neutron network compo-
nent (replacing Nova network, which is now deprecated); ii)
A new modification has been introduced for OpenStack that
allows to deploy Unikernels images without resorting any
hack or changing the execution of the VIM; iii) OpenVIM
has been modified as well in order to integrate Xen hy-
pervisor and instantiate Unikernels based on ClickOS; new
modifications have been implemented for tuning; iv) per-
formance evaluation tools have been extended to support
new VIMs under analysis; v) Analysis and experimental
work consider also OpenVIM and introduce new results for
OpenStack (considering its latest release); vi) finally, since
OpenVIM results were very promising we have evaluated
OpenVIM performances under load conditions and sub-
mitting batch of requests with the objective of emulating
different workloads including also the instantiation of VNFs
chains.

8 CONCLUSIONS

In this work, we have described a general reference model
of the VNF and Micro-VNF instantiation process, and we

have used it to describe the internal workflow of three VIMs:
OpenStack with Nova networking, OpenStack with Neutron
networking, OpenVIM and Nomad. We have considered the
instantiation of ClickOS as an example for a Micro-VNF,
which enables highly dynamic scenarios like the Superfluid
NFV Clouds that have been the starting point of this study.

A critical step of our work has been the implementation
of the modifications needed to integrate the Xen hypervisor
and the instantiation of Unikernels based on ClickOS in the
aforementioned VIMs. Leveraging these, we have provided
measurements on the instantiation process in an experimen-
tal setup, using ad-hoc developed profiling tools. The mod-
ifications of the VIMs and the tools we have developed are
available as open source [16], [17]. Starting from the analysis
of the measurements results, we have also optimized the
instantiation times of Micro-VNFs by modifying the source
code of the VIMs. To the best of our knowledge there are
not results evaluating the suitability of the state of the art
technologies for highly dynamic scenarios nor works doing
a performance evaluation of the NFV framework with same
breadth and comparing several VIMs.

Potential directions of work are to further improve the
performance of the considered VIMs. Currently, we can
identify two viable approaches: i) optimization of other
components; ii) pre-instantiation of Micro-VNFs. We want to
highlight that many components have not been considered
in this work during the optimization steps (e.g., trying to
replace the lazy notification mechanism of Nomad with a
reactive approach). It would also be interesting evaluate the
feasibility of scenarios where the Micro-VNFs are preallo-
cated in batches and left in pause as long as a new requests
are submitted. This has been investigated in [4], but only on
a hypervisor, with no orchestration support.

ACKNOWLEDGMENT

This paper has received funding from the EU H2020 Super-
fluidity and 5G-EVE projects.

REFERENCES

[1] “ETSI Network Function Virtualization.” [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/nfv

[2] R. Buyya et al., “Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th
utility,” Future Generation computer systems, vol. 25, no. 6, 2009.

[3] F. Huici et al., “VMs, Unikernels and Containers: Experiences
on the Performance of Virtualization Technologies.” [On-
line]. Available: https://www.ietf.org/proceedings/95/slides/
slides-95-nfvrg-2.pdf

[4] F. Manco et al., “My VM is Lighter (and Safer) than your Con-
tainer,” in 26th Symposium on Operating Systems Principles. ACM,
2017, pp. 218–233.

[5] J. Shetty et al., “An Empirical Performance Evaluation of Docker
Container, OpenStack Virtual Machine and Bare Metal Server,”
Indonesian Journal of Electrical Engineering and Computer Science,
vol. 7, no. 1, pp. 205–213, 2017.

[6] Xen Project, “The Next Generation Cloud: The Rise of the Uniker-
nel,” Linux Foundation, Tech. Rep., 2015.

[7] J. Cormack, “The Modern Operating System in 2018.” [Online].
Available: https://www.youtube.com/watch?v=dR2FH8z7L04

[8] “Unikraft Project.” [Online]. Available: https://www.xenproject.
org/linux-foundation/80-developers/207-unikraft.html

[9] “Project Clearwater.” [Online]. Available: http://www.
projectclearwater.org

[10] “OpenCORD Project.” [Online]. Available: https://opencord.org
[11] F. Manco et al., “Towards the Superfluid Cloud,” in ACM SIG-

COMM Computer Comm. Rev., vol. 44. ACM, 2014, pp. 355–356.

http://www.etsi.org/technologies-clusters/technologies/nfv
https://www.ietf.org/proceedings/95/slides/slides-95-nfvrg-2.pdf
https://www.ietf.org/proceedings/95/slides/slides-95-nfvrg-2.pdf
https://www.youtube.com/watch?v=dR2FH8z7L04
https://www.xenproject.org/linux-foundation/80-developers/207-unikraft.html
https://www.xenproject.org/linux-foundation/80-developers/207-unikraft.html
http://www.projectclearwater.org
http://www.projectclearwater.org
https://opencord.org


SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING

[12] F. Manco et al., “The Case for the Superfluid Cloud,” in HotCloud,
2015.

[13] G. Bianchi et al., “Superfluidity: a flexible functional architecture
for 5G networks,” Trans. on Emerging Telecommunication Technolo-
gies, vol. 27, no. 9, 2016.

[14] J. Martins et al., “ClickOS and the art of Network Function Virtu-
alization,” in 11th USENIX Conference on Networked Systems Design
and Implementation. USENIX Association, 2014.

[15] P. L. Ventre et al., “Performance Evaluation and Tuning of Virtual
Infrastructure Managers for (Micro) Virtual Network Functions,”
in Network Function Virtualization and Software Defined Networks
(NFV-SDN), IEEE Conference on. IEEE, 2016, pp. 141–147.

[16] “VIM tuning and evaluation tools.” [Online]. Available:
https://github.com/netgroup/vim-tuning-and-eval-tools

[17] “Open Source Mano.” [Online]. Available: https://osm.etsi.org/
[18] “Nomad Project.” [Online]. Available: https://www.

nomadproject.io
[19] “OpenStack.” [Online]. Available: https://www.openstack.org
[20] ETSI. Group for NFV, “Network Functions Virtualisation (NFV);

Management and Orchestration; f. req. specification,” 2016.
[21] “NFV-PER 001.” [Online]. Available: http:

//www.etsi.org/deliver/etsi gs/NFV-PER/001 099/001/01.
01.01 60/gs nfv-per001v010101p.pdf

[22] “Kubernetes.” [Online]. Available: http://kubernetes.io
[23] “Xen Project.” [Online]. Available: http://www.xenproject.org
[24] “KVM Virtualization.” [Online]. Available: https://www.

linux-kvm.org/page/Main Page
[25] “Stub Domains.” [Online]. Available: http:

//www-archive.xenproject.org/files/xensummitboston08/
SamThibault XenSummit.pdf

[26] “OSv.” [Online]. Available: http://osv.io
[27] “Rump Kernels.” [Online]. Available: http://rumpkernel.org
[28] “Scapy.” [Online]. Available: https://scapy.net
[29] “OpenStack Rally.” [Online]. Available: https://wiki.openstack.

org/wiki/Rally
[30] P. Lungaroni et al., “Results from Performance Evaluation

and Testing of Virtual Infrastructure Managers,” Zenodo,
http://doi.org/10.5281/zenodo.1241097.

[31] A. Paradowski et al., “Benchmarking the Performance of Open-
Stack and CloudStack,” in 2014 IEEE 17th International Sympo-
sium on Object/Component-Oriented Real-Time Distributed Comput-
ing. IEEE, 2014, pp. 405–412.

[32] D. Steinmetz et al., “Cloud Computing Performance Benchmark-
ing and Virtual Machine Launch Time,” SIGITE12, pp. 89–90, 2012.

[33] E. Caron et al., “Comparison on OpenStack and OpenNebula
performance to improve multi-Cloud architecture on cosmological
simulation use case,” in Research Report RR-8421. INRIA, 2013.

[34] G. Callegati et al., “Performance of Network Virtualization in
cloud computing infrastructures: The OpenStack case,” in IEEE
CloudNet 2014, 2014.

[35] O. Litvinski et al., “Experimental evaluation of OpenStack com-
pute scheduler,” Proc. Computer Science, vol. 19, pp. 116–123, 2013.

[36] R. Ledyayev et al., “High performance computing in a cloud using
OpenStack,” CLOUD COMPUTING, pp. 108–113, 2014.

[37] R. Cherrueau et al., “Toward a Holistic Framework for Conducting
Scientific Evaluations of OpenStack,” in 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing. IEEE Press,
2017, pp. 544–548.

[38] R. Mijumbi et al., “Management and Orchestration Challenges in
Network Function Virtualization,” IEEE Communications Magazine,
vol. 54(1), 2016.

[39] R. Mijumbi et al., “Network Function Virtualization: State-of-the-
art and Research Challenges,” IEEE Communications Surveys &
Tutorials, vol. 18(1), 2015.

[40] J. Riera et al., “TeNOR: Steps towards an orchestration platform for
multi-PoP NFV deployment,” in NetSoft Conference and Workshops
(NetSoft), 2016 IEEE. IEEE, 2016, pp. 243–250.

Pier Luigi Ventre received his PhD in Electron-
ics Engineering in 2018 from University of Rome
“Tor Vergata”. From 2013 to 2015, he was one of
the beneficiary of the scholarship “Orio Carlini”
granted by the Italian NREN GARR. His main
research interests focus on Computer Networks,
Software Defined Networking, Virtualization and
Information-Centric Networking. He worked as
researcher in several projects founded by the EU
and currently he is a post-doctoral researcher at
CNIT.

Paolo Lungaroni received his Master’s degree
in Telecommunications Engineering from Uni-
versity of Rome “Tor Vergata” in 2015, with a
thesis on Software Defined Networking Appli-
cations for the Network Function Virtualization
Scenarios. From 2015 to 2018, he wins the
scholarship “Orio Carlini” granted by the Italian
NREN GARR. His main research interests focus
on Computer Networks, Software Defined Net-
working and Virtualization. Currently, he works
as researcher for CNIT.

Giuseppe Siracusano is a researcher at NEC
Laboratories Europe. He received his Masters
Degree in Computer Engineering from University
of Rome “Tor Vergata” in 2013. He worked in
different research and development projects as
consultant for Consorzio Nazionale Interuniver-
sitario per le Telecomunicazioni (CNIT), currently
he is also a PhD student in Electronic Engineer-
ing at University of Rome Tor Vergata. His main
research interest are focused software-based
networking architectures and cloud networking.

Claudio Pisa received the M.Sc degree in Com-
puter Science Engineering from the University
“Roma Tre” in 2008, with a thesis on trusted rout-
ing in community networks. Then, after a short
research collaboration, became a student at the
University of Rome “Tor Vergata”, receiving the
Ph.D degree in 2013, with a thesis on Wireless
Community Networks. Before joining CNIT as a
researcher, he has worked as an R&D engineer
in the industry, on Software-Defined Networking
(SDN), Cloud Computing and IoT projects.

Florian Schmidt received his PhD from RWTH
Aachen in 2015 on the topic of heuristic error tol-
erance and recovery for network protocols. His
research background covers network protocol
engineering, operating systems and virtualiza-
tion, and wireless communications. He currently
is a researcher at NEC Laboratories Europe,
where he focuses on research at the intersection
of operating and networked systems and ma-
chine learning.

Francesco Lombardo is co-founder and CTO
at EveryUP S.r.l., spin off company of University
of Rome “Tor Vergata”. He received his Master’s
degree in Computer Engineering from University
of Rome Tor Vergata in 2014. He has worked in
different research and development projects as
researcher for CNIT. His research interests in-
clude Network Function Virtualization, Software
Defined Networking and mobile computing.

Stefano Salsano (M’98-SM’13) received his
PhD from University of Rome “La Sapienza” in
1998. He is Associate Professor at the University
of Rome “Tor Vergata”. He participated in 15 re-
search projects founded by the EU, being project
coordinator in one of them and technical coordi-
nator in two. He has been PI in several research
and technology transfer contracts funded by in-
dustries. His current research interests include
SDN, Network Virtualization, Cybersecurity. He
is co-author of an IETF RFC and of more than

150 peer-reviewed papers and book chapters.

https://github.com/netgroup/vim-tuning-and-eval-tools
https://osm.etsi.org/
https://www.nomadproject.io
https://www.nomadproject.io
https://www.openstack.org
http://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.01_60/gs_nfv-per001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.01_60/gs_nfv-per001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.01_60/gs_nfv-per001v010101p.pdf
http://kubernetes.io
http://www.xenproject.org
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://www-archive.xenproject.org/files/xensummitboston08/SamThibault_XenSummit.pdf
http://www-archive.xenproject.org/files/xensummitboston08/SamThibault_XenSummit.pdf
http://www-archive.xenproject.org/files/xensummitboston08/SamThibault_XenSummit.pdf
http://osv.io
http://rumpkernel.org
https://scapy.net
https://wiki.openstack.org/wiki/Rally
https://wiki.openstack.org/wiki/Rally

